Soil Infiltration Rate Prediction using Machine Learning Regression Model: A Case Study on Sepinggan River Basin, Balikpapan, Indonesia

Versions

pdf

Keywords

Infiltration rate
multiple regression
machine learning
initial water contents
grain size
soils

How to Cite

Sulistyo, T., & Fauzi, R. (2023). Soil Infiltration Rate Prediction using Machine Learning Regression Model: A Case Study on Sepinggan River Basin, Balikpapan, Indonesia. Indonesian Journal on Geoscience, 10(3), 335–347. https://doi.org/10.17014/ijog.10.3.335-347

Abstract

The infiltration rate of soil data is important in a wide range of planning, such as city planning, drainage design, landuse planning, flood prediction, flood disaster mitigation, etc. Collecting data of infiltration through in-site direct measurements is time consuming and costly. Indeed, inferring the infiltration rate using available parameters and the fittest model is needed. The model can shortcut the field measurement to get a predicted accurate infiltration rate that is worthy to support vital planning. This research aims to develop a model of infiltration rate based on initial water contents and grain size of soils. The results are three outstanding models based on the Multiple R Squared, Root Mean Square Error (RMSE), and Mean Average Error (MAE). The implication of the fittest model is reducing the cost and time to get the predicted infiltration rate. The field measurements can be skipped by sampling undisturbed soils and laboratory tests.

Keywords: infiltration rate, initial water contents, grain size

https://doi.org/10.17014/ijog.10.3.335-347
pdf

References

ALENCOÃO, A. M. P., & PACHECO, F. A. L. (2006). Infiltration in the Corgo River basin (northern Portugal): coupling water balances with rainfall-runoff regressions on a monthly basis . Hydrological Sciences Journal, 51(6), 989–1005. https://doi.org/10.1623/hysj.51.6.989

Angulo-Jaramillo, R., Bagarello, V., Iovino, M., & Lassabatere, L. (2016). Infiltration measurements for soil hydraulic characterization. In Infiltration Measurements for Soil Hydraulic Characterization. Springer International Publishing. https://doi.org/10.1007/978-3-319-31788-5

Bergeson, C. B., Martin, K. L., Doll, B., & Cutts, B. B. (2022). Soil infiltration rates are underestimated by models in an urban watershed in central North Carolina, USA. Journal of Environmental Management, 313, 115004. https://doi.org/10.1016/j.jenvman.2022.115004

Bhave, S., & Sreeja, P. (2013). ISH Journal of Hydraulic Engineering Influence of initial soil condition on infiltration characteristics determined using a disk infiltrometer Influence of initial soil condition on infiltration characteristics determined using a disk infiltrometer. https://doi.org/10.1080/09715010.2013.808445

Carslaw, D. (2019). The openair manual — open-source tools for analysing airpollution data. Manual for version2.6-6,University of York. November, 224. https://davidcarslaw.com/files/openairmanual.pdf

Dahan, O., Shani, Y., Enzel, Y., Yechieli, Y., & Yakirevich, A. (2007). Direct measurements of floodwater infiltration into shallow alluvial aquifers. Journal of Hydrology, 344(3–4), 157–170. https://doi.org/10.1016/J.JHYDROL.2007.06.033

Formansya, S., Gani, R. M., Firmansyah, Y., & Hermato, W. (2020). SUMBERDAYA SEAM BATUBARA FORMASI PULAU BALANG DI PT. ANUGERAH BARA KALTIM, KECAMATAN LOA JANAN, KABUPATEN KUTAI KARTANEGARA, KALIMANTAN TIMUR . Padjadjaran Geoscience Journal, 4(6). https://journal.unpad.ac.id/geoscience/article/view/32191/15018

Fueki, N., Lipiec, J., Kuś, J., Kotowska, U., & Nosalewicz, A. (2012). Soil Science and Plant Nutrition Difference in infiltration and macropore between organic and conventional soil management. https://doi.org/10.1080/00380768.2011.644759

Juwita, R., & Santoso, I. B. (2019). Assessment of Soil Infiltration Capability in Balikpapan City. IPTEK Journal of Proceedings Series, 0(5), 291–297. https://doi.org/10.12962/J23546026.Y2019I5.6341

Khosravi, K., Ngo, P. T. T., Barzegar, R., Quilty, J., Alami, M. T., & Bui, D. T. (2022). Comparing the Soil Conservation Service model with new machine learning algorithms for predicting cumulative infiltration in semi-arid regions. Pedosphere, 32, 2–27.

Kiptiah, M., Azmanajaya, E., & Giarto, R. B. (2020). ANALISIS LAJU INFILTRASI DENGAN VARIASI PERMUKAAN TANAH DI KOTA BALIKPAPAN. JURNAL SIPIL SAINS, 10(2). https://doi.org/10.33387/SIPILSAINS.V10I2.2261

Ma, J., Zeng, R., Yao, Y., Meng, X., Meng, X., Zhang, Z., Wang, H., & Zhao, S. (2022). Characterization and quantitative evaluation of preferential infiltration in loess, based on a soil column field test. CATENA, 213, 106164. https://doi.org/10.1016/J.CATENA.2022.106164

McIntyre, D. S., & Sleeman, J. R. (1982). Macropores and hydraulic conductivity in a swelling soil. Soil Research, 20(3), 251–254. https://doi.org/10.1071/SR9820251

Michael, A. M. (2010). Irrigation : theory and practice. 768.

Ruggenthaler, R., Meißl, G., Geitner, C., Leitinger, G., Endstrasser, N., & Schöberl, F. (2016). Investigating the impact of initial soil moisture conditions on total infiltration by using an adapted double-ring infiltrometer. Journal, 61(7), 1263–1279. https://doi.org/10.1080/02626667.2015.1031758

Setiawan, O., Sartohadi, J., Pramono Hadi, M., & Mardiatno, D. (2019). Physical Geography Infiltration characterization using principal component analysis and K-means cluster analysis on quaternary volcanic landscape at the southern flank of Rinjani Volcano, Lombok Island, Indonesia. https://doi.org/10.1080/02723646.2019.1620526

Sihag, P., Singh, V. P., Angelaki, A., Kumar, V., Sepahvand, A., & Golia, E. (2019). Modelling of infiltration using artificial intelligence techniques in semi-arid Iran. Hydrological Sciences Journal, 64(13), 1647–1658. https://doi.org/10.1080/02626667.2019.1659965

Sulistyo, T. (2018). IDENTIFICATION AQUIFER PARAMETERS THROUGH SINGLE WELL PUMPING TEST SERIES AT PT. KALTIM KARIANGAU TERMINAL, BALIKPAPAN, EAST KALIMANTAN. 3(2), 293–300.

Sulistyo, T., & Abrar, A. (2017). Characterization of Thin Alluvial Bed Aquifers in Manggar River Balikpapan East Kalimantan Indonesia. JTT (Jurnal Teknologi Terpadu), 5(1), 54. https://doi.org/10.32487/jtt.v5i1.212

Sy, N. L. (2006). Modelling the infiltration process with a multi-layer perceptron artificial neural network. Hydrological Sciences-Journal-Des Sciences Hydrologiques, 1, 51. https://doi.org/10.1623/hysj.51.1.3

Thomas, A.-D., Austin, A., William, A., Eric, O. D., Alex, A. A., Maxwell, B., Isaac, L., Gilbert, A. A., & Duke, Q. N. D. (2022). Performance evaluation of infiltration models under different tillage operations in a tropical climate. Scientific African, 17, e01318. https://doi.org/10.1016/J.SCIAF.2022.E01318

Tikaram, G., Sikar, T., Singh, K., Sudhir, R. &, Singh, K., Tikaram Patle, G., Rawat, K. S., & Singh, S. K. (2018). Estimation of infiltration rate from soil properties using regression model for cultivated land. https://doi.org/10.1080/24749508.2018.1481633

IJOG as the journal holds copyright of the published papers.