Aliphatic Biomarker Signatures of Crude Oil from Tarakan Subbasin, Tarakan Basin, North Kalimantan, Indonesia
pdf

Keywords

Tarakan Basin
organic geochemistry
aliphatic hydrocarbon fraction
CPI

How to Cite

Zetra, Y., Burhan, R. P., Fitriyyah, M., & Nugrahaeni, Z. V. (2023). Aliphatic Biomarker Signatures of Crude Oil from Tarakan Subbasin, Tarakan Basin, North Kalimantan, Indonesia. Indonesian Journal on Geoscience, 10(2), 139–150. https://doi.org/10.17014/ijog.10.2.139-150

Abstract

Organic geochemical studies of crude oil from Pamusian Field, Tarakan Subbasin, Tarakan Basin, North Kalimantan, have been done. Biomarker aliphatic hydrocarbon fractions were identified using a combined gas chromatography-mass spectrometer (GC - MS). Identified biomarkers consist of n-alkane groups, isoprenoids, bicyclic sesquiterpenoids, and pentacyclic triterpenoids. The most abundant aliphatic hydrocarbon biomarker is pristane followed by n-C19. The existence of n-alkanes shows a homologous (n-C16- n-C30) with a unimodal distribution type. The abundance of n-C19 is higher than other n-alkanes, supported by LHCPI value of 2.03, as an indicator of organic matter derived from microbial organisms. The amount of long chain n-alkanes (n-C25- n-C30) is almost the same as medium chain n-alkanes (n-C19 - n-C24) indicating the source of organic compounds is not only from microbial organisms, but also from terrestrial higher plants. The presence of 8β (H)-drimane compounds together with homodrimane shows the presence of bacterial input on the formation of oil from organic compounds. Ratio of Pr/Ph is 3.76, ratio of drimane/homodrimane is 1.058, ratio of Pr/n-C17 is 34.41, and ratio of Ph/n-C18 is 16.02 indicating the source of organic compounds came from terrestrial higher plants deposited in the oxic environment, and disposed to increase biodegradation. The CPI value is 0.95, and the highest amount of 17α (H), 21β (H)-hopane compounds suggest that Tarakan Subbasin oil was mature, and the source of organic compounds was derived from bacteria

Keywords: Tarakan Basin, organic geochemistry, aliphatic hydrocarbon fraction, CPI

https://doi.org/10.17014/ijog.10.2.139-150
pdf

References

Ahmad, Z. and Samuel, L., 1984. Stratigraphy and depositional cycles in the N.E. Kalimantan Basin, Proceedings Indonesian Petroleum Association 13th Annual Convention, 109 - 120.

Ahmed, M., Volk, H., George, S.C., Faiz, M. and Stalker, L., 2009. Generation and expulsion of oils from Permian coals of the Sydney Basin, Australia. Organic Geochemistry 40, 810-831. DOI : 10.1016/j.orggeochem.2009.04.003.

Al-Atta, M.A., Issa, G.I., Ahmed, M.A. and Afife, M.M., 2014. Source Rock Evaluation and Organic Geochemistry of Belayim Marine Oil Field, Gulf of Suez, Egypt. Egyptian Journal of Petroleum 23, 285 - 302. DOI : 10.1016/j.ejpe.2014.08.005.

Alberdi, M. and Lopez, L., 2000. Biomarker 18α(H)-oleanane: a geochemical tool to assess Venezuelan petroleum systems. Journal of South American Earth Science 13, 751 - 759. DOI : 10.1016/S0895-9811(00)00055-9.

Aldahik, A., 2011. Crude Oil Families in the Euphrates Graben Petroleum System. Berlin Institute of Technology, Berlin.

Biantoro, E., Kusuma., M.I. and Rotinsulu, L.F., 1996, Tarakan sub-basin growth faults, North-East Kalimantan: Their roles hydrocarbon entrapment, proceedings of Indonesian Petroleum Association 25th Annual Convention Jakarta.

Burhan, R.Y.P., Trendel, J.M., Adam, P., Wehrung, P., Albrecht, P. and Nissenbaum, A., 2002. Fossil bacterial ecosystem a methane seeps: Origin of organic matter from Be’eri sulfur deposit, Israel. Geochimica et Cosmochimica Acta 66, 4085-4101. DOI : 10.1016/S0016-7037(02)00979-1.

Chattopadhyay, A. and Dutta, S., 2014. Higher plant biomarker signatures of Early Eocene sediments of North Eastern India. Marine and Petroleum Geology 57, 51 - 67. DOI : 10.1016/j.marpetgeo.2014.04.004.

Cheng, B., Chen, Z., Chen, T., Yang, C. and Wang, T.G., 2018. Biomarker signatures of the Ediacaran–Early Cambrian origin petroleum from the central Sichuan Basin, South China: Implications for source rock characteristics. Marine and Petroleum Geology 96, 577 - 590. DOI : 10.1016/j.marpetgeo.2018.05.012.

Commendatore, M.G., Nievas, M.L., Amin, O. and Esteves, J.L., 2012. Sources and distribution of aliphatic and polyaromatic hydrocarbons in coastal sediments from the Ushuaia Bay (Tierra del Fuego, Patagonia, Argentina). Marine Environment 74, 20 - 31. DOI : 10.1016/j.marenvres.2011.11.010.

Dessort, D., 2013. Short Course Mineral and Organic Geochemistry. In TPA Integrated Week. Surabaya, 2013.

Doust, H. and Noble, R.A., 2008. Petroleum systems of Indonesia. Marine and Petroleum Geology 25, 103–129. DOI : 10.1016/j.marpetgeo.2007.05.007.

El Nady, M.M., Harb, F.M. and Mohamed, N.S., 2014. Biomarker characteristics of crude oils from ashrafi and GH oilfields in the Gulf of Suez, Egypt: an Implication to Source Input an Paleoenvironmental Assesments. Egyptian Journal of Petroleum 23, 445-459. DOI : 10.1016/j.ejpe.2014.11.002.

El Nemr, A., Moneer, A.A., Ragab, S. and El Sikaily, A., 2016. Distribution and sources of n-alkanes and polycyclic aromatic hydrocarbons in shellfish of the Egyptian Red Sea coast. Egyptian Journal of Aquatic Research 42, 121-131. DOI : 10.1016/j.ejar.2016.05.003.

Ellen, H., Husni, M.N., Sukanta, U., Abimanyu, R., Feriyanto and Herdiyan, T., 2008. Middle Miocene Meliat Formation in the Tarakan Islan, regional implications for deep exploration opportunity, proceedings of Indonesian Petroleum Association 32nd Annual Convention, Jakarta, Vol.1

Fabiańska, M.J. and Kurkiewicz, S., 2013. Biomarkers, Aromatic Hydrocarbons and Polar Compounds in the Neogene Lignites and Gangue Sediments of The Konin and Turoszów Brown Coal Basins (Poland). International Journal of Coal Geology 107, 24 - 44. DOI : 10.1016/j.coal.2012.11.008.

Garcia, M.R., Cattani, A.P., Lana, P.C., Figueira, R.C.S. and Martins, C.C., 2019. Petroleum biomarkers as tracers of low-level chronic oil contamination of coastal environments: A systematic approach in a subtropical mangrove. Environmental Pollution 249, 1060 - 1070. DOI : 10.1016/j.envpol.2019.03.006.

Hakimi, M.H., Ahmed, A.F. and Abdullah, W.H., 2016. Organic Geochemical and Petrographic Characteristics of The Miocene Salif Organic-Rich Shales in The Tihama Basin, Red Sea of Yemen: Implications for Paleoenvieromantal Conditions and Oil-Generation Potential. International Journal of Coal Geology, 154 - 155, 193 - 204. DOI : 10.1016/j.coal.2016.01.004.

Han, Y., John, G.F. and Clement, T.P., 2019. Understanding the thermal degradation patterns of hopane biomarker compounds present in crude oil. Science of the Total Environment 667, 792 - 798. DOI : 10.1016/j.scitotenv.2019.02.445.

Husein, S., 2017. Lithostratigraphy of Tabul Formation and Onshore Geology of Nunukan Island, North Kalimantan, Journal of Applied Geology 2(1), 25–35. DOI: 10.22146/jag.30255

Hu, G., Yang, R., Wang, L., Hu, W. and Cao, J., 2019. Hydrocarbon potential and depositional environment of the Lower Cretaceous black mudstones and shales in the coastal Guangdong Province, China. Marine and Petroleum Geology 99, 92–106. DOI : 10.1016/j.marpetgeo.2018.10.008.

Idris, H.K.A., Salihu, I., Abdulkadir, M.N. and Almustapha, 2008. Application of geochemical parameters for characterization of oil samples using GCMS technique. International Journal of Physical Sciences 3, 152-155.

Ji, L., He, C., Zhang, M., Wu, Y. and Li, X., 2016. Bicyclic alkanes in source rocks of the Triassic Yanchang Formation in the Ordos Basin and their inconsistency in oil-source correlation. Marine and Petroleum Geology 72, 359-373. DOI : 10.1016/j.marpetgeo.2016.02.021.

Jiang, L. and George, S.C., 2018. Biomarker signatures of Upper Cretaceous Latrobe Group hydrocarbonsource rocks, Gippsland Basin, Australia: Distribution andpalaeoenvironment significance of aliphatic hydrocarbons. International Journal of Coal Geology 196, 29 - 42. DOI : 10.1016/j.coal.2018.06.025.

Killops, S. and Killops, V., 2005. Introduction to organic geochemistry. Blackwell Publishing, United Kingdom.

Kim, J.H., Lee, D.H., Yoon, S.H., Jeong, K.S., Choi, B. and Shin, K.H., 2017. Contribution of petroleum-derived organic carbon to sedimentary organic carbon pool in the eastern Yellow Sea (the northwestern Pacific). Chemosphere 168, 1389-1399. DOI: 10.1016/0016-7037(61)90069-2

Kvenvolden, K.A., 2008. Origins of Organic Geochemistry. Organic Geochemistry 39, 905 - 909. DOI : 10.1016/j.orggeochem.2008.02.017.

Larasati, D., Suprayogi, K. and Akbar, A., 2016. Crude Oil Characterization of Tarakan Basin: Application of Biomarkers, The 9th International Conference on Petroleum Geochemistry in the Africa-Asia Region. Bandung

Lentini, M.R. and Darman, H., 1996. Aspects of the Neogene tectonic history and hydrocarbon geology of the Tarakan Basin, Proceedings Indonesian Petroleum Association 25th Silver Anniversary Convention, 241-251.

Li, G., Li, L., Tarozo, R., Longo, W.M., Wang, K.J., Dong, H. and Huang, Y., 2018. Microbial production of long-chain n-alkanes: Implication for interpreting sedimentary leaf wax signals. Organic Geochemistry 298, 24 - 31. DOI : 10.1016/j.orggeochem.2017.10.005.

Massone, C.G., Wagener, A.D.L.R., Abreu, H.M. and de Veiga, Á., 2013. Revisiting hydrocarbons source appraisal in sediments exposed to multiple inputs. Marine Pollution Bulletin 73, 345 - 354. DOI : 10.1016/j.marpolbul.2013.05.043.

Nawawi, A., Suseno, A. and Heriyanto, N., 1996. Petroleum Geology of Indonesian Basins Volume V Tarakan Basin Northeast Kalimantan. Pertamina, Jakarta.

Nytoft, H.P., Andersen, G.K., Knudsen, T.S., Stojanovic, K. and Rise, F., 2014. Compound ‘‘J’’ in Late Cretaceous/Tertiary terrigenous oils revisited: Structure elucidation of a rearranged oleanane coeluting on GC with 18b(H)-oleanane. Organic Geochemistry 77, 89 - 95. DOI : 10.1016/j.orggeochem.2014.09.010.

Nytoft, H.P., Samuel, O.J., Kildahl-Andersen, G., Johansen, J.E. and Jones, M., 2009. Novel C15 sesquiterpanes in Niger Delta oils: structural identification and potential application as a new markers of angiosperms input in light oils. Organic Geochemistry 40, 595 - 603. DOI : 10.1016/j.orggeochem.2009.02.003.

Onojake, M.C., Osuji, L.C. and Abrakasa, S., 2015. Source, depositional environment and maturity levels of some crude oils in southwest Niger Delta, Nigeria. Chinese Journal of Geochemistry 34, 224-232. DOI : 10.1007/s11631-015-0035-9.

Peters, K.E. and Fowler, M.G., 2002. Application of petroleum geochemistry to exploration and reservoir management. Organic Geochemistry 33, 5 - 36. DOI: 10.1016/S0146-6380(01)00125-5.

Peters, K.E., Walters, C.C. and Moldowan, J.M., 2005. The Biomarker Guide: I. Biomarkers and Isotopes in the Environment and Human History. Cambridge University Press, USA.

Philp, 1985. Biological markers in fossil fuel production. Mass Spectrometry Review 4, 1 - 54.

Prakash, K.S., Singh, M.P., Alok, K.S. and Arora, M., 2010. Petrographic characteristics of coal from the Lati Formation, Tarakan basin, East Kalimantan, Indonesia. International Journal of Coal Geology 81, 109–116. DOI: 10.1016/j.coal.2009.11.006

Rudra, A., Dutta, S. and Raju, S.V., 2017. The Paleogene vegetation and petroleum system in the tropics: A biomarker approach. Marine and Petroleum Geology 86, 38 - 51. DOI: 10.1016/j.marpetgeo.2017.05.008.

Safein, K.J., Nguyen, T.X. and Philp, R.P., 2017. Organic geochemical and paleoenvironmental characterization of the Brown Shale Formation, Kiliran sub-basin, Central Sumatra Basin, Indonesia. Organic Geochemistry 112, 137 - 157. DOI: 10.1016/j.orggeochem.2017.06.017.

Schwarzbauer, J., Littke, R. and Strauss, H. 2013. Stable carbon isotope ratios of aliphatic biomarkers in Late Palaeozoic coals. International Journal of Coal Geology 107, 127–140.

Soeparyono, N. and Lennox, P., 1990. Structural development of hydrocarbon traps in the Cepu oil fields, northeast Java, Indonesia. Journal of Southeast Asian Earth Sciences 4, 281 - 291. DOI: 10.1016/0743-9547(90)90003-V.

Stojanović, K. and Životić, D., 2013. Comparative study of Serbian Miocene coals — Insights from biomarker composition. International Journal of Coal Geology 107, 3 - 23. DOI: 10.1016/j.coal.2012.09.009.

Sutadiwiria, Y., Hamdani, A.H., Sendjaja, Y.A., Haryanto, I. and Yeftamikha., 2018. Biomarker Composition of Some Oil Seeps from West Sulawesi, Indonesia. Indonesian Journal On Geoscience 5 (3), 211-220. DOI:10.17014/ijog.5.3.211-220.

Taylor, D.W., Li, H., Dahl, J., Fago, F.J., Zinniker, D. and Moldowan, J.M., 2006. Biogeochemical evidence for the presence of the angiosperm molecular fossil oleanane in Paleozoic and Mesozoic non-angiospermous fossils. Paleobiology 32, 179 - 190. DOI:10.1666/0094-8373(2006)32[179:BEFTPO]2.0.CO;2.

Wang, T.G. and Simoneit, B.R.T., 1991. Organic geochemistry and coal petrology of Tertiary brown coal in the Zhoujing mine, Baise Basin, South China: 3. Characteristics of polycyclic aromatic hydrocarbons. Fuel 70, 819-829. DOI:10.1016/0016-2361(91)90188-G.

Wight, A.W.R., Hare., L.H. and Reynolds, J.R., 1993. Tarakan Basin, NE Kalimantan, Indonesia: a century of exploration and future potential. Geology Society Malaysia, Bulletin 33, 263-288. DOI: 10.7186/bgsm33199319

Xiao, H., Li, M., Liu, J., Mao, F., Cheng, D. and Yang, Z., 2019. Oil-oil and oil-source rock correlations in the Muglad Basin, Sudan and South Sudan: New insights from molecular markers analyses. Marine and Petroleum Geology 103, 351-365. DOI: 10.1016/j.marpetgeo.2019.03.004.

Yangming, Z., 2001. Geochemical Characteristics of Different Kinds of Crude Oils in the Tarim Basin, Northwest China. Chinese Journal of Geochemistry 20, 73 – 87. DOI: 10.1177/0144598717742969.

Yudiartono, Anindhita, Sugiyono, A., Wahid, L.M.A. and Adiarso, 2018. Outlook Energi Indonesia 2018: Energi Berkelanjutan untuk Transportasi Darat. Pusat Pengkajian Industri Proses dan Energi, Tangerang.

Zajuli, M.H.H. and Panggabean, H., 2014. Hydrocarbon Source Rock Potential of Sinamar Formation, Muara Bungo, Jambi. Indonesian Journal On Geoscience 1 (1), 53-64. DOI :10.17014/ijog.v1i1.175.

Zetra, Y., Sosrowidjojo, I.B. and Burhan, R.Y.P., 2016. Paleoenvironment of Brown Coal From Sangatta Coal Mines, East Borneo, Indonesia. Jurnal Teknologi 78:7, 121-129. DOI:10.11113/jt.v78.9166.

Zetra, Y., Kusuma, H.S., Riandra, F., Sosrowidjojo, I.B. and Burhan, R.Y.P., 2018. The Oxygenated Biomarker as an Indicator of Origin and Maturity of Miocene Brown Coal, Sangatta Coal Mines, East Kalimantan. Indonesian Journal On Geoscience 5 (2), 107-116. DOI:10.17014/ijog.5.2.107-116.

Zhu, Y., Sun, L., Hao, P. and Tuo, L., 2018. Geochemical composition and origin of Tertiary oils in the Yinggehai and Qiongdongnan Basins, offshore South China Sea. Marine and Petroleum Geology 2018, 139 – 153. DOI:10.1016/j.marpetgeo.2018.05.029.

Zdravkov, A., Stefanov, M., Worobi, E., Bechtel, A., Marinov, S. and Kortenski, J., 2020. “Implications for peat formation in Maritsa-West Basin, SE Bulgaria : Insights from organic petrology, palynology and biomarker assemblage”. International Journal of Coal Geology, 222, 103-447. DOI: 10.1016/j.coal.2020.103447

IJOG as the journal holds copyright of the published papers.