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Abstract - Organic geochemical studies of crude oil from Pamusian Field, Tarakan Subbasin, Tarakan Basin, North 
Kalimantan, have been done. Biomarker aliphatic hydrocarbon fractions were identified using a combined gas 
chromatography-mass spectrometer (GC - MS). Identified biomarkers consist of n-alkane groups, isoprenoids, bicyclic 
sesquiterpenoids, and pentacyclic triterpenoids. The most abundant aliphatic hydrocarbon biomarker is pristane 
followed by n-C19. The existence of n-alkanes shows a homologous (n-C16- n-C30) with a unimodal distribution type. The 
abundance of n-C19 is higher than other n-alkanes, supported by LHCPI value of 2.03, as an indicator of organic matter 
derived from microbial organisms. The amount of long chain n-alkanes (n-C25- n-C30) is almost the same as medium 
chain n-alkanes (n-C19 - n-C24) indicating the source of organic compounds is not only from microbial organisms, 
but also from terrestrial higher plants. The presence of 8β (H)-drimane compounds together with homodrimane 
shows the presence of bacterial input on the formation of oil from organic compounds. Ratio of Pr/Ph is 3.76, ratio 
of drimane/homodrimane is 1.058, ratio of Pr/n-C17 is 34.41, and ratio of Ph/n-C18 is 16.02 indicating the source of 
organic compounds came from terrestrial higher plants deposited in the oxic environment, and disposed to increase 
biodegradation. The CPI value is 0.95, and the highest amount of 17α (H), 21β (H)-hopane compounds suggest that 
Tarakan Subbasin oil was mature, and the source of organic compounds was derived from bacteria.
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Introduction

Background
The need of crude oil in Indonesia during 

2016-2050 will increase with an average growth of 
3.3% per year, and it will affect crude oil imports. 
Indonesia has the potential of oil reserves, spread-
ing throughout the country which is significant to 
increase the crude oil and condensate production. 

Several basins in Sumatra and Kalimantan have 
been proven as productive oil and gas sources 
(Doust and Noble, 2008; Yudiartono et al., 2018). 
One of them is Tarakan Basin. Exploration of oil 
in Tarakan Basin has been carried out since 1899, 
and 14 oil and gas fields have been discovered. To-
day, 86% of oil production comes from two fields, 
namely Pamusian Field on Tarakan Island and Bu-
nyu Field on Bunyu Island (Nawawi et al., 1996).
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Production of oil in Pamusian Field, Tarakan 
Subbasin, has entered the drainage stage (Nawawi 
et al., 1996). Reactivation of oil wells is one of 
the methods to increase the crude oil production 
(Soeparyono and Lennox, 1990), but this method 
costs a lot of money, so feasibility data of wells 
were required before reactivation (Peters et al., 
2005). Optimization of petroleum exploration 
and production can be increased by studying its 
organic geochemical aspects. Organic geochem-
istry provides information about the relationship 
between petroleum and rock sources, the map of 
environmental conditions of oil deposition and 
rock sources, the estimated time of formation, and 
the migration and accumulation of oil (Peters and 
Fowler, 2002; Kvenvolden, 2008). 

The presence of hydrocarbon information was 
needed for the reactivation of wells. The level of 
maturity and type of organic resources impacted 
the presence of hydrocarbon and productivity of 
rock sources (Peters and Fowler, 2002; Sutadi-
wiria et al., 2018; Hu et al., 2019). The studies of 
biomarker show that a good hydrocarbon source 
comes from higher plants. Some significant bio-
markers of hydrocarbon from Guangdong Prov-
ince, China, are long chain n-alkanes (n-C27, n-C29, 
n-C31), isoprenoid C19 and C20, tricyclic terpane, 
and C29 sterane (Hu et al., 2019). The studies of 
organic geochemical of hydrocarbon aliphatic 
fraction had been reported to identify the source 
of organic matter, depositional environment, and 
thermal maturity of petroleum (Ahmed et al., 
2009; Al-Atta et al., 2014; Xiao et al., 2019). The 
biomarkers such as alkane, isoprenoid, terpane, 
and sterane are included in aliphatic hydrocarbon 
group on petroleum source (Peters et al., 2005; El 
Nady et al., 2014; Onojake et al., 2015; Sutadiwiria 
et al., 2018). The degree of biodegradation in the 
reservoir is detected through the loss of n-alkanes, 
isoprenoids, terpane, and sterane during the sec-
ondary process, and they determine the level of oil 
maturity (Peters et al., 2005). The ratio of pristane 
and phytane and the distribution of n-alkanes can 
be used as environmental indicators of oil deposi-
tion (Al-Atta et al., 2014; Hakimi et al., 2016). 
Biomarker analysis had been applied to several 

source rocks, including Sydney Basin sediments 
(Ahmed et al., 2009), Niger Delta oil (Nytoft et al., 
2014), Sinamar Formation, Muara Bungo, Jambi 
(Zajuli and Panggabean, 2014), Ordos Basin oil (Ji 
et al., 2016), North Arafura Shelf Papua (Sabra, 
2021), and Eocene source rock in West Sulawesi 
(Sutadiwiria et al., 2022). The Tarakan Basin, 
which has entered the exploitation of drainage, 
requires an in-depth study of organic geochemis-
try to determine the depositional environment, its 
maturity, and the source of its organic material. 
Aim of this paper, besides to discuss the aspects 
of organic geochemistry through the analysis of 
aliphatic hydrocarbon biomarkers in order to de-
termine the potential of crude oil in the Tarakan 
Subbasin, North Kalimantan, it also focuses on 
depositional environment, origin of oil organic 
compounds, and thermal maturity.

Geological Setting of Tarakan Basin
The Tarakan Basin is located to the north 

eastern part of Kalimantan Island. To the northern 
part, the basin is bounded by Samporna Peninsula, 
to the west by Sekatak-Berau Ridge, to the south 
by Mangkalihat Peninsula, and to the east by deep 
water of Sulawesi Sea (Achmad and Samuel, 
1984; Lentini and Darman, 1996). 

 The Tarakan Basin consists of four subbasins. 
They are Tarakan Subbasin in the centre offshore, 
Muara Subbasin in the southeast offshore, Berau 
Subbasin in the southwest onshore, and Tidung 
Subbasin in the northwest onshore (Figure 1). The 
Tarakan Basin occurred during Middle Miocene 
to Late Miocene, almost to Early Pleistocene  
(Prakash et al., 2010).

Tectonically, several faults are responsible 
for isoclinal arch structures in the Tarakan Basin, 
named Tarakan Arch (100 km length) and Bunyu 
Arch (30 km length) (Lentini and Darman, 1996; 
Husein, 2017). The Tarakan and Bunyu arches 
produced 92% of all commercial hydrocarbon 
accumulations in the basin, and have been the 
most targetted of the offshore exploration activity 
(Wight et al., 1993).

Tectonostratigraphy of the Tarakan Basin is 
devided into three phases, those are pre-rift, syn-
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rift, and post-rift (Ellen et al., 2008; Larasati et 
al., 2016). Pre-rift phase comprises the basement 
of Danau Formation consisting of methamorphic 
rock. The initial stage of rifting basin evolution 
took place during the Early Eocene. In the Middle 
Eosen, the uplifting period to the western part 
of the basin caused the erosion at the Sekatak 
Ridge, and the deposition of sedimentation began 
(Biantoro et al., 1996).

Materials And Methods

Tarakan Basin Oil Samples
Crude oil samples were collected from the Pa-

musian Field, Tarakan Subbasin, Tarakan Basin, 
North Kalimantan. Bitumen and water content in 
crude oil samples were separated. Two grams of 
bitumen were separated from the molten layer in 
50 mL n-hexane. The molten was further fraction-
ated by silica gel GF254 column chromatography. 
Then, it was eluted using n-hexane to obtain 
aliphatic hydrocarbon fraction, dichloromethane 
to obtain aromatic hydrocarbon fractions, and 
methanol to obtain polar fractions (Zetra et al., 
2018; Garcia et al., 2019). 

GC-MS Analysis
The aliphatic hydrocarbon fractions were ana-

lyzed by gas chromatography-mass spectrometry 

(GC - MS). GC - MS was performed on Agilent 
(D5975C), mass spectrometer operated at 70 
eV with a mass range of m/z 40 to 800, and a 
cycle time of 1.7 s. The gas chromatograph was 
equipped with a HP-5MS capillary column (30 
m x 250 µm x 0.2 µm) and helium as carrier gas. 
The samples were injected at 70o C (isothermal 
for two minutes) with an oven programme of 
10o C min

-1 to 100o C, 4o C min
-1 to 300o C, held 

for twenty min. Identification of biomarkers  are 
based on published mass spectra (including the 
NIST98 spectral library) and interpretation of 
typical fragmentation patterns and references 
from previous published researchers.

Results and Analysis

The structure of aliphatic hydrocarbon bio-
markers of the Tarakan Subbasin oil was iden-
tified based on specific m/z fragmentograms, 
retention times, and mass spectra (including 
the NIST98 spectral library) and interpretation 
of observed fragmentation patterns (Seifert and 
Moldowan, 1978; Philp, 1985; Wang and Simo-
neit, 1991; Lu and Kaplan, 1992; Chattopadhyay 
and Dutta, 2014; Jiang and George, 2018; Li 
et al., 2018). Identified aliphatic hydrocarbon 
biomarkers consist of n-alkane, isoprenoid, ses-
quiterpenoid bicyclic groups, and pentacyclic 
triterpenoids as seen in Total Ion Chromatogram 
(TIC) (Figure 2). Sterane compounds are not 
found in Tarakan Subbasin oil samples, and the 
most abundant aliphatic hydrocarbon biomarker 
is pristane.

n-Alkane and Isoprenoid Biomarkers
Identification of n-alkane and isoprenoid com-

pounds for Tarakan oil was carried out based on 
fragmentogram m/z 57, retention time, and mass 
spectrum data compared with previous researches 
(Kim et al., 2017; Li et al., 2018). Fragmentogram 
of n-alkane and isoprenoid compounds as seen in 
Figure 3 shows the n-alkane homologous series 
which are distributed in the range of n-C16 - n-C30 
with unimodal distribution type. 

o4 N

o3 N

o2 N

o1 N

o116 E o117 E o118 E o119 E

Figure 1. Regional setting of Tarakan Basin (image from 
Google Earth, Husein, 2017).
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Bicyclic Sesquiterpenoid Biomarkers
The presence of sesquiterpenoid compounds 

in Tarakan Subbasin oil samples was identified 
based on fragmentogram m/z 123. Identification 
of the structure of each compound was carried 
out based on fragmentation reactions, by com-
paring mass spectrum obtained, and the previous 
researches (Seifert and Moldowan, 1978; Philp, 
1985; Lu and Kaplan, 1992; Stojanovic and 
Zivotic, 2013; Chattopadhyay and Dutta, 2014; 
Zdravkov et al., 2020). The eight peaks in the 

fragmentogram were identified as C14 bicyclic 
sesquiterpene; C15 bicyclic sesquiterpene; trans-
cadinane; 4β(H)-eudesmane; 8β(H)-drimane; 
homocadinane; homodrimane, and C16-bicyclic 
sesquiterpene (Figure 4).

 
Pentacyclic Triterpenoid Biomarkers 

Identification of the structure of pentacyclic 
triterpane compounds in Tarakan oil samples was 
carried out based on fragmentogram m/z 191. 
Identification of biomarker structures was also 
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Figure 2. Total Ion Chromatogram (TIC) aliphatic hydrocarbon fraction of crude oil from Tarakan Subbasin. Condition: KG-SM 
temperature programme 70℃ (2 min), 70℃ -100℃ (10℃ /min), 100℃ -300℃ (4℃ /min) isotherm temperature at 300℃.

Figure 3. Fragmentogram m/z 57 that indicates n-alkane and isoprenoid.IJ
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done by comparing the mass spectrum obtained 
and the mass spectrum that has been published 
by previous researchers (Seifert and Maldowan, 
1978; Philp, 1985; Wang and Simoneit, 1990; 
Lu and Kaplan, 1992; Chattopadhyay and Dutta, 
2014; Jiang and George, 2018; Sutadiwiria et al., 
2018). The six peaks in the fragmentogram are 
identified as cis-cis-trans-bicadinane; trans-trans-
trans-bicadinane; C30 triterpane; 17α(H)-21β(H)-
norhopane; 18α(H)-oleanane and 17α (H)-21β 
(H)-hopane with the most dominant compound 
is 17α(H)-21β (H)-hopane (Figure 5).

Discussion

The distribution of short-chain n-alkanes (< 
n-C16) is extremely low, but pristane isoprenoids 
are at the highest amount (Table 1 and Figure 
2). The low intensity of short chain n-alkanes 
indicates the very small role of algae in the for-
mation of Tarakan oil organic compound. The 
existence of short chain n-alkanes (<C17) proves  
that organic compounds are derived from algae, 
plankton, and marine bacteria (Peters et al., 2005; 
Massone et al., 2013). The identification of the 
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medium chain n-alkane group (n-C17 - n-C24) 
suggests the presence of bacterial activity in the 
ancient depositional environment of Tarakan oil 
(Peters et al., 2005; Fabiańska and Kurkiewicz, 
2013). The maximum concentration for n-alkane 
medium chains (n-C19 - n-C24) is seen at n-C19. 
The presence of n-C19 was also previously de-
tected with very high concentrations in green 
algae and anaerobic bacteria (Li et al., 2018). 
The dominance of n-C19 compared to other n-
alkanes was also found in the study of El Nady 
et al. (2014) on Egyptian Gulf Suez oil which 
signify organic material derived from microbial 
organisms. The existence of long chain n-alkanes 
(n-C25 - n-C38) with almost the same amount as 
medium chain n-alkanes (except n-C19) denotes 
the source of organic compounds derived from 
terrestrial higher plants (Xiaou et al., 2019). 
The dominance of odd carbon to even carbon in 
long-chain n-alkanes (n-C25 - n-C30), especially in 
n-C25, n-C27 and n-C29, shows the organic com-
pound of Tarakan oil derived from the cuticular 
tissue of terrestrial higher plant wax ( Massone et 
al., 2013; Stojanović and Životić, 2013) was pro-
duced through decarboxylation reaction of fatty 

acids (Killops and Killops, 2005). The dominance 
of odd carbon to even carbon is also indicated by 
the CPI (Carbon Perference Index) value of 0.95 
as seen in Tables 1 and 2. The CPI value can be 
used to determine the level of sample maturity. 

Dessort (2013) reported that a CPI value close 
to 1 indicated a mature sample, as well as in the 
research of Onojake et al. (2015) which had a 
CPI value between 0.72 and 1.09. Therefore, the 
CPI value of 0.95 obtained  indicates a mature oil 
sample. The CPI value of 0.73 points out the level 
immature up to early mature, that is also shown by 
sedimentary rocks from the Sinamar Formation 
Muara Bungo, Jambi (Zajuli and Panggabean, 
2013). The LHCPI value is 2.03, indicating the 
dominance of the medium chain over the long 
chain (Aldahik, 2010). This is due to the pre-
dominance of n-C19. This LHCPI value denotes 
a high level of bacterial input (Commendatore et 
al., 2012). High intensity n-C19 indicates the pres-
ence of bacteria that survive the catagenesis stage. 
The specific bacteria for n-C19 are photosynthetic 
bacteria (El Nemr et al., 2016).

The identification carried out based on frag-
mentogram m/z 57 with molecular ion m/z 268, 
shows the presence of pristane (Ph) and m/z 282 
(Figure 2) indicating the presence of phytane 
(Ph) with a Pr/Ph ratio of 3.76 in the analyzed 
oil sample (Table 2). This Pr/Ph ratio value can 
be used to determine the oil deposition environ-
ment. High ratio of Pr/Ph (> 3.0) indicates that 
the source of terrestrial organic compounds were 
from the oxidic environment, while a low ratio Pr/
Ph (<0.8) denotes anoxic/hypersalin or carbonate 
depositional environments (Idris et al., 2008). 
Therefore, a Pr/Ph ratio of 3.76 in the Tarakan 
Subbasin oil sample indicates oil samples was 

Table 1. Percent Intensity of Each Peak m/z 57

Retention Time 
(minutes) n-alkane Intensity (%)

27.09 n-C16 2.01
32.77 n-C17 2.91
33.21 pristane 100.00
37.25 n-C18 1.66
37.79 phytane 26.57
41.49 n-C19 12.86
45.53 n-C20 6.75
49.63 n-C21 6.60
56.47 n-C22 2.06
59.07 n-C23 1.73
63.11 n-C24 5.27
66.99 n-C25 7.21
70.76 n-C26 2.98
74.42 n-C27 2.70
77.97 n-C28 2.72
81.24 n-C29 3.13
85.4 n-C30 5.87

Parameter CPIa LHCPIb Pr/Ph Pr/n-C17 Ph/n-C18

Value 0.95 2.03 3.76 34.41 16.02

a CPI       =  (Kim, et al., 2017)

b LHCPI =  (Schwarzbauer, et al., 2013; Kim, et al., 2017)

Table 2. Molecular Parameter of Tarakan Basin Oil
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formed in an oxidic environment with an input 
of terrestrial organic matter (Chattopadhyay and 
Dutta, 2014). Besides the Pr/Ph ratio, the organic 
geochemical aspects of the Tarakan Subbasin oil 
sample can also be determined based on the value 
of the isoprenoid ratio to n-alkanes. This value 
is used to determine the input source of organic 
matter, biodegradation, and maturity level. The 
Pr/n-C17 ratio in the Tarakan Subbasin oil sample 
has a value of 34.41, while the Ph/n-C18 value 
is 16.02 (Table 2). The two values were plotted 
into the graph as shown in Figure 6, and it was 
found that the source of organic material from 
the sample came from terrestrial higher plants, 
oxidic depositional environment, and the ten-
dency of increasing biodegradation. This data is 
in accordance with the Pr/Ph ratio= 3.76 as an 
environmental indicator of the deposition of the 
Tarakan Subbasin oil which was analyzed, and 
the dominance of odd carbon to even carbon from 
the n-alkane homologous series. 

Figure 6. Graph plot of Pr/n-C17 versus Ph/n-C18 of crude 
oil from Tarakan Subbasin. Graph plotted based on Sefein 
et al. (2017) publication.

Therefore, this data confirmed with previous 
analysis stating that the source of organic mate-
rial from Tarakan oil came from terrestrial higher 
plants deposited in an oxidic environment, tended 
to increase biodegradation.

The presence of dominant peaks in bicyclic 
sesquiterpenoid biomarkers is shown by the 
sesquiterpane C15 and C16-bicyclic (Figure 4). 
The dominance of bicyclic sesquiterpane C15 
compounds in oil samples analyzed indicated that 
organic material came from terrestrial plant resin 
and prokaryotic bacteria. This assumption is also 
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supported by the presence of C14 bicyclic sesquiter-
pene compounds although in low intensity (Ji et al., 
2016; Zetra et al., 2016). Cadinane originates from 
polycadinane precursors found in Angiosperms 
plant damar resins, especially the Dipterocarpaeae 
family that undergo depolymerization reactions. 
So, the presence of trans-cadinane compounds is 
considered an indicator of terrestrial higher plants 
of Angiosperms. This is supported by the existence 
of 4β(H)-eudesmane compounds in samples where 
these compounds can be found in plant tissue fos-
sils. The structure of eudesmane compounds is 
related to the terpenoid carbon framework derived 
from terrestrial higher plants (Peters et al., 2005; 
Zetra et al., 2016; Jiang and George, 2018).

The presence of 8β (H)-drimane compounds 
together with homodrimane was also identified in 
the analyzed oil sample. Both of these compounds 
indicate the presence of bacterial input on the for-
mation of oil organic compounds. This is shown 
by the relationship of the biomarker structure with 
the bacteriohopanepolyol precursors produced 
by Archaebacteria, so that the existence of these 
two compounds can be related to bacterial input 
in the formation of oil organic material. The pres-
ence of drimane and homodrimane compounds 
as indicators of bacterial input has also been 
previously reported in low rank coal samples of 
Sangatta, East Kalimantan (Zetra et al., 2016; 
2018), Meghalaya coal samples, India (Rudra et 
al., 2017), and samples of Gippsland Basin rocks, 
Australia (Jiang and George, 2018).

The ratio of drimane to homodrimane can be 
used to determine the depositional environment. 
The value of the ratio of drimane to homodrimane 
from the Tarakan Subbasin oil sample is 1.058. 
According to Yangming (2001), this value sug-
gests that the sample was deposited in an oxidic 
environment. The rearrangement mechanism of 
the two compounds is similar to diasterane, which 
requires acidic clay minerals as a catalyst that is 
formed in an oxidic depositional environment 
(Yangming, 2001). The presence of homocadinane 
in the Tarakan Subbasin oil, is thought to origi-
nate from the same precursors as cadinane in the 
form of polycadinane as an abundant precursor 
in resin of higher plant Angiosperms. Therefore, 
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the identification of this homocadinane compound 
is potentially used as an indicator of terrestrial 
plants, Angiosperms. The same compound has 
also been reported in oil samples in the Yinggehai 
Basin, China (Zhu et al., 2018). The presence of 
C16 bicyclic sesquiterpene compounds denotes the 
oil was formed in terrestrial environments, and is 
as an indicator of higher plants. This compound is 
thought to have formed through oleanoid degrada-
tion from the plant Angiosperms at the stage of 
diagenesis (Nytoft et al., 2009; Zhu et al., 2018).

The cis-cis-trans-bicadinane and trans-trans-
bicadinane compounds (Figure 5) identified in 
the Tarakan Subbasin oil sample analyzed were 
dimeric cyclization products from cadinene. This 
compound was formed through the depolymer-
ization reaction and ring closure of polycadinene 
macromolecules. Polycadinanes have been iso-
lated from both fossil and damar resin extracts of 
the plant Angiosperms family Dipterocarpaceae 
whose vegetation was abundant in the Tertiary 
period. Therefore, the presence of this compound 
is also potential as an indicator of the plant Angio-
sperms family Dipterocarpaceae. The same result 
was reported in the sediments of Northeast India 
(Chattopadhyay and Dutta, 2014) and some oil 
seeps from West Sulawesi, Indonesia (Sutadiwiria 
et al., 2018). Besides that, triterpane compounds, 
generally C30 is also mostly derived from bacteria. 
Since the synthesis of triterpenoids in sediments 
is carried out by bacteria, these compounds are 
also used as important indicators to determine the 
presence of bacterial inputs in the formation of 
oil organic compounds ( Zhu et al., 2018). The 
presence of bicadinane compounds identified 
based on the m/z 191 fragmentogram (Figure 5) 
in the analyzed sample is closely related to one of 
the sesquiterpane bicyclic compounds; namely: 
cadinane. This is due to these two compounds 
derived from the same precursors; namely: poly-
cadinane (Peters et al., 2005). Thus, the occurence 
of these two compounds confirmed the idea that 
the Tarakan Basin oil sample comes from the 
plant of Angiosperms family Dipterocarpaceae. 

The oleanane compound identified in the 
analyzed oil sample is a triterpenoid pentacyclic 
compound derived from β-amyrin as a precursor 

(Taylor et al., 2006; Jiang and George, 2018). 
Oleanane compounds have two isomers; namely: 
18α(H)-oleanane and 18β(H)-oleanane, where 
the more stable configuration is –α (Alberdi and 
Lopez, 2000). Therefore, the presence of 18α(H)-
oleanane compounds in the oil samples analyzed 
indicates that the Tarakan Subbasin oil is derived 
from higher plants Angiosperms. The presence of 
this oleanane compound has also been previously 
reported in rock samples in the Gippsland Basin, 
Australia (Jiang and George, 2018). 

Hopane compounds with configurations of 
17α(H), 21β(H)-hopane based on fragmentogram 
m/z 191 were also identified in the oil sample 
analyzed. The presence of hopane compounds 
can be used to determine the maturity of the 
sample. Hopane biomarkers have several isomer 
configurations; namely: 17β (H), 21β (H); 17β 
(H), 21α(H), and 17α(H), 21β(H) which are the 
isomers with the highest stability. High intensity 
of isomers which have high structural stability 
indicates mature sediment samples (Burhan et al., 
2002; Han et al., 2019).  Hence, the 17α (H), 21β 
(H)-hopane compounds with the highest amount 
were identified, but no other hopane isomers found 
in the form of 17β (H), 21β (H); 17β (H), 21α (H) 
is a very strong indication that the Tarakan Sub-
basin oil is mature. The presence of 17α(H), 21β 
(H)-hopane compounds has also been reported 
previously in the Brown Shale sample of the Cen-
tral Sumatra Basin (Sefein et al., 2017), samples 
of the Central Sichuan Basin, China (Cheng et 
al., 2018), and oil seeps from West Sulawesi, 
Indonesia (Sutadiwiria et al., 2018).

The presence of several hopanoid compounds 
in the analyzed oil sample also shows the pres-
ence of bacterial input in the oil formation 
environment, because the hopanoid compound 
is produced by the bacteriohopanepolyol precur-
sors produced by aerobic bacteria (Killops and 
Killops, 2005; Han et al., 2019). The presence of 
bacterial activity that plays a role in the ancient 
environment of Tarakan Subbasin oil formation, 
has also been proven by the presence of other 
biomarkers in the analyzed samples, such as the 
high amount of n-C19 medium chains, C15-bicyclic 
sesquiterpane, drimane and homodrimane. The 
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dominance of n-C19 indicates the role of photo-
synthetic bacteria in the formation of the analyzed 
Tarakan Basin oil (El Nemr et al., 2016).

Conclusion

The study of organic geochemistry through the 
analysis of biomarkers of the Tarakan Subbasin oil, 
North Kalimantan, provides information on the 
composition of organic matter, the depositional 
environment, and the maturity of sources. The 
existence of long chain n-alkanes, cadinane; 4β(H)-
eudesmane; 18α(H)-oleanane derived compounds 
indicate the source of organic material that comes 
from the damar resin of the plant Angiosperms. It 
is also reported that drimane compounds, homodri-
mane, and hopane are indicators of bacterial input 
in the formation of oil from organic compounds. 
A value of LHCPI is 2.03 and high amount of 
n-C22 also indicate the presence of photosynthetic 
bacterial input. CPI value of 0.95 indicates that 
the samples are mature. The obtained Pr/Ph ratio 
of 3.76 and drimane/homodrimane ratio of 1.058 
indicate the oxidic depositional environment of oil 
samples in the Tarakan Subbasin.
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