Geochemical Signatures of Potassic to Sodic Adang Volcanics, Western Sulawesi: Implications for Their Tectonic Setting and Origin

Godang Shaban, Fadlin Fadlin, Bambang Priadi

Abstract


DOI:10.17014/ijog.3.3.195-214

The Adang Volcanics represent a series of (ultra) potassic to sodic lavas and tuffaceous rocks of predominantly trachytic composition, which forms the part of a sequence of Late Cenozoic high-K volcanic and associated intrusive rocks occurring extensively throughout Western Sulawesi. The tectonic setting and origin of these high-K rocks have been the subject of considerable debates. The Adang Volcanics have mafic to mafitic-intermediate characteristics (SiO2: 46 - 56 wt%) and a wide range of high alkaline contents (K2O: 0.80 - 9.08 %; Na2O: 0.90 - 7.21 %) with the Total Alkali of 6.67 - 12.60 %. Al2O3 values are relatively low (10.63 - 13.21 %) and TiO2 values relatively high (1.27 - 1.91 %). Zr and REE concentrations are also relatively high (Zr: 1154 - 2340 ppm; Total REE (TREY = TRE): 899.20 - 1256.50 ppm; TRExOy: 1079.76 - 1507.97 ppm), with an average Zr/TRE ratio of ~ 1.39. The major rock forming minerals are leucite/pseudoleucite, diopside/aegirine, and high temperature phlogopite. Geochemical plots (major oxides and trace elements) using various diagrams suggest the Adang Volcanics formed in a postsubduction, within-plate continental extension/initial rift tectonic setting. It is further suggested magma was generated by minor (< 0.1 %) partial melting of depleted MORB mantle material (garnet-lherzolite) with the silicate melt having undergone strong metasomatism. Melt enrichment is reflected in the alkaline nature of the rocks and geochemical signatures such as Nb/Zr > 0.0627 and (Hf/Sm)PM > 1.23. A comparison with the Vulsini ultrapotassic volcanics from the Roman Province in Italy shows both similarities (spidergram pattern indicating affinity with Group III ultrapotassics volcanics) and differences (nature of mantle metasomatism).


Keywords


Adang Volcanics; sodic and potassic/ultrapotassic; within-plate continental extension/initial rift; metasomatized silicate melts; leucite/pseudoleucite

References


Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., and Mitchell, J.G., 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research 102 p.67-95. Elsevier.

DOI:10.1016/S0377-0273(00)00182-7

Aldanmaz, E., Koprubasi, N., Gurer, O.F., Kaymakci, N., and Gourgaud, A., 2006. Geochemical constraints on the Cenozoic, OIBtype alkaline volcanic rocks of NW Turkey : Implications for mantle sources and melting processes. Lithos 86 p.50-76, Elsevier. DOI:10.1016/j.lithos.2005.04.003

Anthony R., Philpotts, and Ague, J.J., 1989. (2nd edition): Principles of Petrography of Igneous and Metamorphic Rocks. Cambridge University Press (Fig. 15.10 : Depth to Benioff zone, Hatherton and Dickinson, 1969. DOI:10.1017/CBO9780511813429

Babechuk, M.G., Widdowsonc, M., and Kamber, B.S., 2014. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chemical Geology, 363, p.56-75. (modified of Weathering Ternary Diagram of Mafic/Basaltic from Nesbitt & Wilson (1992), MIA(o)).

DOI:10.1016/j.chemgeo.2013.10.027

Bergman, S.C., Coffield, D.Q., Talbot, J.P., and Garrard, R.A., 1996. Tertiary Tectonic and Magmatic Evolution of Western Sulawesi and the Makassar Strait, Indonesia - Evidence for a Miocene Continent-Continent Collision. In: (eds Hall, R. and Blundell, D. J.(Eds.), Tectonic evolution of Southeast Asia. Geological Society of London, Special Publication, 106, p.391-429.

DOI:10.1144/GSL.SP.1996.106.01.25

Deer W.A. and Andrew R., 2001. (2nd edition). Rock-Forming Minerals: Framework Silicates (Feldspars), Volume 4A. Published by The Geological Society. p.46 (Ternary solid solution An-Ab-Or).

DOI: 10.1017/CBO9780511813429

Foley, S.F., Venturelli, G., Green, D.H., and Toscani, L., 1987. The ultrapotassic rocks : Characteristics, classification and constraints for petrogenetic models. Earth Science Reviews, 24, p.81-134.

DOI:10.1016/0012-8252(87)90001-8

Godang, S., 2015a. Introduction of Godangs Trapezoid Geochemistry for Determining Magmatic Classification, Review & Discussion with Unsoed’s Geo-academician & Geo-colleger.

Godang, S., 2015b. Introduction of Godangs Trapezoid Geochemistry for Determining Magmatic Classification, Guest Lecture STTNAS and AKPRIND (Jogya).

Godang, S., 2016. Godangs Trapezoid Geochemistry Diagram. In preparation.

Gupta A.K., 2015. Origin of Potassium-rich Silica-deficient Igneous Rocks. Springer India. p.11(pseudoleucite), p.72-74.

DOI:10.1007/978-81-322-2083-1_2

Hatherton, T. and Dickinson, W.R., 1969. The relationship between andesitic volcanism and seismicity in Indonesia, the Lesser Antilles,

and other island arcs. Journal Geophysical Research (74), p.5301-5310. DOI: 10.1029/JB074i022p05301

Hollocher, K., Robinson, P., Walsh, E., and Roberts, D., 2012. Geochemistry of amphibolitefacies volcanics and gabbros of the Støren Nappe in extensions west and southwest of Trondheim, Western Gneiss Region, Norway: a key to correlations and paleotectonic settings. American Journal of Science, 312, p.357-416. DOI: 10.2475/04.2012.01

https://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth’s_crust (ratio Th/U ~ 3)

https://minerva.union.edu/hollochk/c_petrology/discrim/discrim.htm

La Flèche, R., Camiré, G., and Jenner, G.A., 1998. Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chemical Geology, 148, p.115-136. DOI: 10.1016/S0009-2541(98)00002-3

Le Bas, M.J, Le Maitre, R.W., Streckeisen A, and Zanettin, B., 1986. A Chemical classification of Volcanic Rocks based on the Total Alkalisilica Diagram. Journal of Petrology, 27, p.745-750.

DOI:10.1093/petrology/27.3.745

Le Roex, A.P., Dick, H.J.B., Erlank, A.X, Reid, A.M., Frey, F.A., and Hart, S. R., 1983. Geochemistry, Mineralogy and Petrogenesis of Lavas Erupted along the Southwest Indian Ridge Between the Bouvet Triple Junction and 11 Degrees East. Journal of Petrology, 24 (3), p.267-318. DOI: 10.1093/petrology/24.3.267

Leterrier, J., Yuwono, Y.S., Soeria-Atmadja, R., and Muary, R.C., 1990. Potassic Volcanism in Central Jawa and South Sulawesi, Indonesia. Journal Southeast Asian Earth Sciences, 4, p.171-187. DOI:10.1016/S0743-9547(05)80011-X

MacLean, W.H., and Barrett, T.J., 1993. Lithogeochemical technique using immobile elements. Journal of Geochemical Exploration 48(2), p.109-133. DOI: 10.1016/0375-6742(93)90002-4

Maulana, A., Imai, A., Van Leeuwen, T., Watanabe, K., Yonezu, K., Nakano, T., Boyce, A., Page, L., and Schertsen, A., 2016. Origin and geodynamic setting of Late Cenozoic Granitoids in Sulawesi. Journal of Asian Earth Sciences, 124, p.102-125.

DOI: 10.1016/j.jseaes.2016.04.018

Muller D. and Groves D.I., 1997 . Potassic Igneous Rocks and Associated Gold-copper Mineralization. In: Bhattacharji, S., Friedman,

G.M., Neugebauer, H.J., and Seilacher, A.(Eds.), Lecture Notes in Earth Sciences, 56, p.143-166.

DOI: 10.1007/978-3-662-00920-8_3


Full Text: PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License
Indonesian Journal on Geoscience by https://ijog.geologi.esdm.go.id/index.php/IJOG/index is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

Indexing Site :

 

 

 

Follow us on:


shopify visitor statistics
View My Stats