Indonesian Landforms and Plate Tectonics

Herman Th. Verstappen


DOI: 10.17014/ijog.v5i3.103

The horizontal configuration and vertical dimension of the landforms occurring in the tectonically unstable parts of Indonesia were resulted in the first place from plate tectonics. Most of them date from the Quaternary and endogenous forces are ongoing. Three major plates – the northward moving Indo-Australian Plate, the south-eastward moving SE-Asian Plate and the westward moving Pacific Plate - meet at a plate triple-junction situated in the south of New Guinea’s Bird’s Head. The narrow North-Moluccan plate is interposed between the Asia and Pacific. It tapers out northward in the Philippine Mobile Belt and is gradually disappearing. The greatest relief amplitudes occur near the plate boundaries: deep ocean trenches are associated with subduction zones and mountain ranges with collision belts. The landforms of the more stable areas of the plates date back to a more remote past and, where emerged, have a more subdued relief that is in the first place related to the resistance of the rocks to humid tropical weathering Rising mountain ranges and emerging island arcs are subjected to rapid humid-tropical river erosions and mass movements. The erosion products accumulate in adjacent sedimentary basins where their increasing weight causes subsidence by gravity and isostatic compensations. Living and raised coral reefs, volcanoes, and fault scarps are important geomorphic indicators of active plate tectonics. Compartmental faults may strongly affect island arcs stretching perpendicular to the plate movement. This is the case on Java. Transcurrent faults and related pull-apart basins are a leading factor where plates meet at an angle, such as on Sumatra. The most complicated situation exists near the triple-junction and in the Moluccas. Modern research methods, such as GPS measurements of plate movements and absolute dating of volcanic outbursts and raised coral reefs are important tools. The mega-landforms resulting from the collision of India with the Asian continent, around 50.0 my. ago, and the final collision of Australia with the Pacific, about 5.0 my. ago, also had an important impact on geomorphologic processes and the natural environment of SE-Asia through changes of the monsoonal wind system in the region and of the oceanic thermo-haline circulation in eastern Indonesia between the Pacific and the Indian ocean. In addition the landforms of the region were, of course, affected by the Quaternary global climatic fluctuations and sea level changes.


mega landforms; morphostructures; plate tectonics; Indonesia


Bellier, O., Bellon, H., Sebrier, M., Sutanto, and Maury, R., 1999. K-Ar age of the Ranau tuffs, implications for the Ranau caldera emplacement and slip-partitioning in Sumatra. Tectonophysics, 312, p.347-359. DOI:10.1016/S0040-1951(99)00198-5

Bock, Y., Prawirodirdjo, Genrich, L., Stevens, J.F., McCaffrey, C.W., Subarya, C., Puntodewo, S. S.O., and Calais, E., 2003. Crustal motion in Indonesia from Global Positioning System measurements. Journal of Geophysical Research, 108/NO.B8, 2367, ETG3, p.1-21.

Gupta, A.(Ed.), 2003. The physical geography of Southeast Asia. Oxford Univercity. Press, p.1- 440.

Hamilton,W., 1979. Tectonics of the Indonesian region. USGS prof. Paper 1078, p.1-345.

Hantoro, W.S., Pirazzoli, P.A., Jouannic, C., Faure, H., Hoang, C.T., Radtke, U., Causse, C., Best, M.B., Lafont, R., Bieda, S., and Lambeck, K., 1994. Uplifted Quaternary coral reef terraces on Alor island, eastern Indonesia. Proceedings,3rd CLIP Meeting, Bali, p. 22-24.

Hall, R., 2002. Cenozoic geological and Plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, models and animations. Journal Asian Earth Sciences, 20/4, p.353-431. DOI:10.1016/S1367-9120(01)00069-4

Hall, R. and Blundell, D., (Eds.), 1996. Tectonic evolution of Southeast Asia. Geological Society, Special Publication. 106, p.1-284. DOI:10.1017/s0016756898328988

Javelosa, R.S., 1994. Active Quaternary environments in the Philippine Mobile belt. Ph.D. Thesis ITC, Enschede; 179 pp.

Katili, J.A., 1980. Geotectonics of Indonesia, a modern view. Directorate General of Mines Jakarta, Publication, 271 pp.

Kreemer, C., Holt, W.E., Goes, S., and Govers, R., 2000. Active deformation in eastern Indonesia and the Philippines from GPS and seismicity data. Journal of Geophysical. Research, 105/B1, p. 663-680. DOI:10.1029/1999JB900356

Michel, G.W., Yu,Y. Q., Zhu, S.Y., Reigber, C., Becker, M., Reinhart, E., Simons, W., Ambrosius, B., Vigny, C., Chamot-Rooke, N., Le Pichon, X., Morgan, P., and Matheussen, S. 2001. Crustal movement and block behaviour in SE-Asia from GPS measurements. Earth and Planetary Science Letters, 187, p.239-244. DOI:10.1016/S0012-821X(01)00298-9

Pirazzoli, P.A., Radtke, U., Hantoro, W.S., Jouannic, C., Hoang, C.T., Causse, C., and Best, M. B., 1991. Quaternary raised coral-reef terraces on Sumba, Indonesia. Science, 252, p.1834-1836. DOI:10.1126/science.252.5014.1834

Pubellier, M., Deffontaines, B., Chorowicz, J., Rudant J.P., and Permana, H. 1999. Active denudation morphostructures from SAR ERS-1 images (SW Irian Jaya). International Remote Sensing, 20, p.789-800. DOI:10.1080/014311699213190

Puntodewo,S.S.O., Mc Caffrey,R.,Calais, E., Bock, Y., Rais. J., Subarya, C., Poewariardi, R., Stevens, C., Genrich, J., Fauzi, Zwick, P., and Wdowinski, S., 1994. GPS measurements of crustal deformation within the Pacific-Australia Plate boundary zone in Irian Jaya, Indonesia. Tectonophysics, 237, p.141-153. DOI:10.1016/0040-1951(94)90251-8

Replumaz, A., Kárason, H., van der Hilst, Rob D., Besse, J., and Tapponnier, P., 2004. 4-Devolution of SE Asia’s mantle from geological reconstruction. Earth and Planetary Science Letters, 221, p.103-115. DOI:10.1016/S0012-821X(04)00070-6

Sieh, K. and Natawidjaja, D., 2000. Neotectonics of the Sumatran fault. Journal of Geophysical Research, 105, B1: p.8295-8326. DOI: 10.1029/2000JB900120

Silver, E. A., Mc Caffrey, R., and Smith, R. B. , 1983. Collision, rotation and the initiation of subduction in the evolution of Sulawesi, Indonesia. Journal of Geophysical Research, 88/B11, p. 9407-9418. DOI:10.1029/JB088iB11p09407

Simons, W. J. F., Ambrosius, B.A.C., Noomen, R., Angermann, D., Wilson, P., Becker, M., Reinhart, E., Walpersdorf, A., and Vigny, C.,1999. Observing Plate movements in SE Asia: geodetic results of the GEODYSEA project. Geophysical Research Papers, 26/14, p.2081-2084. DOI:10.1029/1999GL900395

Stevens, C.W., Mc Caffrey, R., Bock, Y., Genrich, J.F., Pubellier, M., and Subarya, C., 2002. Evidence for block rotations and basal shear in the world’s fastest slipping continental shear zone in NW New Guinea. Plate Boundary Zones. Geodynamics Series, 30, p.87-99. DOI:10.1029/GD030p0087

Sumosusastro, P.A., Tjia, H.D., Fortuin, A.R., and van Der Plicht, J., 1989. Quaternary reef record of differential uplift at Luwuk, Sulawesi east arm, Indonesia. Netherland Journal of Sea Resources, 24(2-3), p.277-285. DOI:10.1016/0077-7579(89)90154-3

Umbgrove, J.F.H. 1949. The structural history of the East Indies. Cambridge Universitas Press, 63pp. DOI:10.1017/S0016756800075464

Verstappen, H.Th., 2000. Outline of the geomorphology of Indonesia. ITC Enschede, the Netherlands Publication. 79, 212 pp.

Visser, W.A. and Hermes, J.J., 1962. Geological results of the exploration for oil in Netherlands New Guinea. Konijnklijke Nederland Geologische Mijnbouwkundige Genootschap, Verhandelingen Geologische Serie, 20, 265pp.

Full Text: PDF


  • There are currently no refbacks.

Creative Commons License
Indonesian Journal on Geoscience by is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Indexing Site :




Follow us on:

shopify visitor statistics
View My Stats