Magmatic Evolution and Plumbing System of Gede-Salak Volcano, Banten, Indonesia
pdf

Keywords

evolution
plumbing
geothermobarometry
mineral chemistry
Gede Salak

How to Cite

Salni, M. A. S., Yuningsih, E. T., & Ohba, T. (2023). Magmatic Evolution and Plumbing System of Gede-Salak Volcano, Banten, Indonesia. Indonesian Journal on Geoscience, 10(2), 245–276. https://doi.org/10.17014/ijog.10.2.245-276

Abstract

The study of individual volcanoes in northwest Java has been largely overlooked. In this study, an investigation of the magma evolution and plumbing system of Gede-Salak Volcano was conducted. A geological survey determined the lava unit and volcanism. The whole-rock geochemistry is utilized to determine the magma type and evolution. Mineral chemistry based on microprobe analysis revealed the magmatic process and phenocryst origin. Geothermobarometry is employed to estimate the temperature and pressure. The volcanism comprised the eruption of lava flows, sector collapse, and the eruption of lava domes. The magma evolution consists of two magma types: type A (lava flow and peripheral dome) and type B (summit dome). The processes identified are amphibole fractionation, magma mixing, and crust assimilation. Phenocryst textures and chemistry implied open-system processes in
the plumbing system involving three magma series, namely the felsic, intermediate, and mafic series. Magma type A resulted from multiple mafic recharges on the felsic series, while type B resulted from the mixing of intermediate and mafic series. The felsic and intermediate phenocryst crystallization occurred at 933-948°C and 1010-1011°C in the mid-crust at 14 km to 17 km depth. Meanwhile, the mafic series reside in the lower crust at 21 km depth and of 1065-1087°C temperature.

Keywords: Gede-Salak, magma evolution, magma plumbing, geothermobarometry, mineral chemistry

https://doi.org/10.17014/ijog.10.2.245-276
pdf

References

Anggono, T., Syuhada, S., Febriani, F., Handayani, L., Mukti, M. M., and Amran, A., 2020. Crustal shear-wave velocity structure in Western Java, Indonesia from analysis of teleseismic receiver functions. Journal of Earth System Science, 129 (1), p.6. DOI: 10.1007/s12040-019-1288-1

Blundy, J., and Cashman, K., 2005. Rapid decompression-driven crystallization recorded by melt inclusions from Mount St. Helens volcano. Geology, 33 (10), p.793. DOI: 10.1130/G21668.1

Buckley, V. J. E., Sparks, R. S. J., and Wood, B. J., 2006. Hornblende dehydration reactions during magma ascent at Soufrière Hills Volcano, Montserrat. Contributions to Mineralogy and Petrology, 151 (2), 121–140. DOI: 10.1007/s00410-005-0060-5

Burchardt, S. (2018). Introduction to Volcanic and Igneous Plumbing Systems—Developing a Discipline and Common Concepts. In: Burchardt, S (eds.), Volcanic and Igneous Plumbing Systems Elsevier. DOI: 10.1016/B978-0-12-809749-6.00001-7

Cashman, K., and Blundy, J., 2013. Petrological cannibalism: the chemical and textural consequences of incremental magma body growth. Contributions to Mineralogy and Petrology, 166 (3), p.703–729. DOI: 10.1007/s00410-013-0895-0

Chadwick, J. P., Troll, V. R., Waight, T. E., van der Zwan, F. M., and Schwarzkopf, L. M., 2013. Petrology and geochemistry of igneous inclusions in recent Merapi deposits: a window into the sub-volcanic plumbing system. Contributions to Mineralogy and Petrology, 165 (2), p.259–282. DOI: 10.1007/s00410-012-0808-7

Cioni, R., Marianelli, P., and Santacroce, R., 1998. Thermal and compositional evolution of the shallow magma chambers of Vesuvius: Evidence from pyroxene phenocrysts and melt inclusions. Journal of Geophysical Research: Solid Earth, 103 (B8), p.18277–18294. DOI: 10.1029/98JB01124

Coote, A. C., and Shane, P., 2016. Crystal origins and magmatic system beneath Ngauruhoe volcano (New Zealand) revealed by plagioclase textures and compositions. Lithos, 260, p.107–119. DOI: 10.1016/j.lithos.2016.05.017

Costa, F., Andreastuti, S., Bouvet de Maisonneuve, C., and Pallister, J. S., 2013. Petrological insights into the storage conditions, and magmatic processes that yielded the centennial 2010 Merapi explosive eruption. Journal of Volcanology and Geothermal Research, 261, p.209–235. DOI: 10.1016/j.jvolgeores.2012.12.025

Costa, F., Dohmen, R., and Chakraborty, S., 2008. Time Scales of Magmatic Processes from Modeling the Zoning Patterns of Crystals. Reviews in Mineralogy and Geochemistry, 69 (1), p.545–594. DOI: 10.2138/rmg.2008.69.14

D’Mello, N. G., Zellmer, G. F., Negrini, M., Kereszturi, G., Procter, J., Stewart, R., Prior, D., Usuki, M., and Iizuka, Y., 2021. Deciphering magma storage and ascent processes of Taranaki, New Zealand, from the complexity of amphibole breakdown textures. Lithos, 398–399, p.106264. DOI: 10.1016/j.lithos.2021.106264

Dahren, B., Troll, V. R., Andersson, U. B., Chadwick, J. P., Gardner, M. F., Jaxybulatov, K., and Koulakov, I., 2012. Magma plumbing beneath Anak Krakatau volcano, Indonesia: evidence for multiple magma storage regions. Contributions to Mineralogy and Petrology, 163 (4), p.631–651. DOI: 10.1007/s00410-011-0690-8

Davidson, J., Turner, S., Handley, H., Macpherson, C., and Dosseto, A., 2007. Amphibole "sponge" in arc crust? Geology, 35 (9), 787. DOI: 10.1130/G23637A.1

De Angelis, S. H., Larsen, J., and Coombs, M., 2013. Pre-eruptive Magmatic Conditions at Augustine Volcano, Alaska, 2006: Evidence from Amphibole Geochemistry and Textures. Journal of Petrology, 54 (9), p.1939–1961. DOI: 10.1093/petrology/egt037

De Angelis, S. H., Larsen, J., Coombs, M., Dunn, A., and Hayden, L., 2015. Amphibole reaction rims as a record of pre-eruptive magmatic heating: An experimental approach. Earth and Planetary Science Letters, 426, p.235–245. DOI: 10.1016/j.epsl.2015.06.051

de Silva, S., and Lindsay, J. M., 2015. Primary Volcanic Landforms. In: H. Sigurdsson (eds.), The Encyclopedia of Volcanoes. Elsevier, pp. 273–297. DOI: 10.1016/B978-0-12-385938-9.00015-8

Deegan, F. M., Whitehouse, M. J., Troll, V. R., Budd, D. A., Harris, C., Geiger, H., and Hålenius, U., 2016. Pyroxene standards for SIMS oxygen isotope analysis and their application to Merapi volcano, Sunda arc, Indonesia. Chemical Geology, 447, p.1–10. DOI: 10.1016/j.chemgeo.2016.10.018

Dessimoz, M., Müntener, O., and Ulmer, P., 2012. A case for hornblende dominated fractionation of arc magmas: the Chelan Complex (Washington Cascades). Contributions to Mineralogy and Petrology, 163 (4), p.567–589. DOI: 10.1007/s00410-011-0685-5

Efimov, A. A., and Malitch, K. N., 2012. Magnetite-orthopyroxene symplectites in gabbros of the Urals: A structural track of olivine oxidation. Geology of Ore Deposits, 54 (7), p.531–539. DOI: 10.1134/S1075701511070075

Fischer, T. P., and Marty, B., 2005. Volatile abundances in the sub-arc mantle: insights from volcanic and hydrothermal gas discharges. Journal of Volcanology and Geothermal Research, 140 (1–3), 205–216. DOI: 10.1016/j.jvolgeores.2004.07.022

Giacomoni, P. P., Coltorti, M., Bryce, J. G., Fahnestock, M. F., and Guitreau, M., 2016. Mt. Etna plumbing system revealed by combined textural, compositional, and thermobarometric studies in clinopyroxenes. Contributions to Mineralogy and Petrology, 171 (4). DOI: 10.1007/s00410-016-1247-7

Gill, J. B., 1981. Orogenic Andesites and Plate Tectonics. Springer, Berlin. DOI: 10.1007/978-3-642-68012-0

Ginibre, C., Kronz, A., and Wörner, G., 2002. High-resolution quantitative imaging of plagioclase composition using accumulated backscattered electron images: new constraints on oscillatory zoning. Contributions to Mineralogy and Petrology, 142 (4), p.436–448. DOI: 10.1007/s004100100298

Green, N., and Powell, J., 2006. Amphibole-controlled Differentiation of High-Mg Andesite Magmas in a Hot Subduction Environment. Proceedings, AGU Fall Meeting, San Francisco.

Habtoor, A. M., Ahmed, A. H., Al-Akhaly, I. A., Harbi, H. M., and Said, N. M., 2022. Orthopyroxene-magnetite symplectites in gabbro of Gabal Taftafan, western Arabian Shield, Saudi Arabia. Arabian Journal of Geosciences, 15 (6), 524. DOI: 10.1007/s12517-022-09812-x

Hall, R., 2012. Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570–571, p.1–41. DOI: 10.1016/j.tecto.2012.04.021

Hamilton, W., 1973. Tectonics of the Indonesian Region. Bulletin of the Geological Society of Malaysia, 6, p.3–10. DOI: 10.7186/bgsm06197301

Hammer, J. E., and Rutherford, M. J., 2002. An experimental study of the kinetics of decompression-induced crystallization in silicic melt. Journal of Geophysical Research: Solid Earth, 107 (B1), p.ECV 8-1-ECV 8-24. DOI: 10.1029/2001JB000281

Handley, H. K., Blichert-Toft, J., Gertisser, R., Macpherson, C. G., Turner, S. P., Zaennudin, A., and Abdurrachman, M., 2014. Insights from Pb and O isotopes into along-arc variations in subduction inputs and crustal assimilation for volcanic rocks in Java, Sunda arc, Indonesia. Geochimica et Cosmochimica Acta, 139, p.205–226. DOI: 10.1016/j.gca.2014.04.025

Handley, H. K., Davidson, J. P., Macpherson, C. G., and Stimac, J. A., 2008. Untangling differentiation in arc lavas: Constraints from unusual minor and trace element variations at Salak Volcano, Indonesia. Chemical Geology, 255 (3–4), p.360–376. DOI: 10.1016/j.chemgeo.2008.07.007

Handley, H. K., Macpherson, C. G., and Davidson, J. P., 2010. Geochemical and Sr-O isotopic constraints on magmatic differentiation at Gede Volcanic Complex, West Java, Indonesia. Contributions to Mineralogy and Petrology, 159 (6), p.885–908. DOI: 10.1007/s00410-009-0460-z

Handley, H. K., Macpherson, C. G., Davidson, J. P., Berlo, K., and Lowry, D., 2007. Constraining Fluid and Sediment Contributions to Subduction-Related Magmatism in Indonesia: Ijen Volcanic Complex. Journal of Petrology, 48 (6), p.1155–1183. DOI: 10.1093/petrology/egm013

Harjono, H., Diament, M., Dubois, J., Larue, M., and Zen, M. T., 1991. Seismicity of the Sunda Strait: Evidence for crustal extension and volcanological implications. Tectonics, 10 (1), p.17–30. DOI: 10.1029/90TC00285

Hasibuan, R. F., 2020. The evolution of magma plumbing system in Tangkil and Rajabasa volcanoes, Indonesia. PhD Thesis at Department of Geoscience, Geotechnology, and Material Resource Engineering, Akita University.

Hawthorne, F. C., Oberti, R., Harlow, G. E., Maresch, W. V., Martin, R. F., Schumacher, J. C., and Welch, M. D., 2012. Nomenclature of the amphibole supergroup. American Mineralogist, 97 (11–12), p.2031–2048. DOI: 10.2138/am.2012.4276

Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., and Smoczyk, G. M., 2018. Slab2, a comprehensive subduction zone geometry model. Science, 362 (6410), p.58–61. DOI: 10.1126/science.aat4723

Hildreth, W., and Moorbath, S., 1988. Crustal contributions to arc magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology, 98 (4), p.455–489. DOI: 10.1007/BF00372365

Holland, T., and Blundy, J., 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116 (4), p.433–447. DOI: 10.1007/BF00310910

Huchon, P., and Le Pichon, X., 1984. Sunda Strait and Central Sumatra fault. Geology, 12 (11), 668. DOI: 10.1130/0091-7613(1984)12<668:SSACSF>2.0.CO;2

Irvine, T. N., and Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8 (5), p.523–548. DOI: 10.1139/e71-055

Jakeš, P., and White, A. J. R., 1970. ratios of rocks from island arcs. Geochimica et Cosmochimica Acta, 34 (8), p.849–856. DOI: 10.1016/0016-7037(70)90123-7

Kimura, J. I., Gill, J. B., Kunikiyo, T., Osaka, I., Shimoshioiri, Y., Katakuse, M., Kakubuchi, S., Nagao, T., Furuyama, K., Kamei, A., Kawabata, H., Nakajima, J., Van Keken, P. E., and Stern, R. J., 2014. Diverse magmatic effects of subducting a hot slab in SW Japan: Results from forward modeling. Geochemistry, Geophysics, Geosystems, 15 (3), p.691–739. DOI: 10.1002/2013GC005132

Kopp, H., Flueh, E. R., Klaeschen, D., Bialas, J., and Reichert, C., 2001. Crustal structure of the central Sunda margin at the onset of oblique subduction. Geophysical Journal International, 147 (2), p.449–474. DOI: 10.1046/j.0956-540x.2001.01547.x

Kurniawan, I. A., Suparka, E., Abdurrachman, M., and Hasenaka, T., 2013. Petrology and Geochemistry of Gede-Salak Volcano Northwest Java: Evolution of magmatic process. Proceeding, IAVCEI, Kagoshima.

Kurniawan, I. A., Suparka, E., Hasenaka, T., and Suparka, E., 2011. Quartenary Gede Salak volcanic complex, Banten area, at the junction between Sumatra arc and Java arc, Indonesia. Japan Geoscience Union Meeting, Chiba.

Le Bas, M. J. L., Maitre, R. W. L., Streckeisen, A., Zanettin, B., and Zanetin, B., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27 (3), p.745–750. DOI: 10.1093/petrology/27.3.745

Li, L., Xiong, X. L., and Liu, X. C., 2017. Nb/Ta fractionation by amphibole in hydrous basaltic systems: Implications for arc magma evolution and continental crust formation. Journal of Petrology, 58 (1), p.3–28. DOI: 10.1093/petrology/egw070

Linnen, R. L., and Keppler, H., 2002. Melt composition control of Zr/Hf fractionation in magmatic processes. Geochimica et Cosmochimica Acta, 66 (18), p.3293–3301. DOI: 10.1016/S0016-7037(02)00924-9

McDonough, W. F., and Sun, S., 1995. The composition of the Earth. Chemical Geology, 120 (3–4), p.223–253. DOI: 10.1016/0009-2541(94)00140-4

Miyashiro, A., 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274 (4), p.321–355. DOI: 10.2475/ajs.274.4.321

Nadeau, O., Williams-Jones, A. E., and Stix, J., 2013. Magmatic–hydrothermal evolution and devolatilization beneath Merapi volcano, Indonesia. Journal of Volcanology and Geothermal Research, 261, p.50–68. DOI: 10.1016/j.jvolgeores.2013.04.006

Nandedkar, R. H., Hürlimann, N., Ulmer, P., and Müntener, O., 2016. Amphibole–melt trace element partitioning of fractionating calc-alkaline magmas in the lower crust: an experimental study. Contributions to Mineralogy and Petrology, 171 (8–9), 71. DOI: 10.1007/s00410-016-1278-0

Neave, D. A., and Putirka, K. D., 2017. A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones. American Mineralogist, 102 (4), p.777–794. DOI: 10.2138/am-2017-5968

Ohba, T., Kimura, Y., and Fujimaki, H. (2007). High-Magnesian Andesite Produced by Two-Stage Magma Mixing: a Case Study from Hachimantai, Northern Honshu, Japan. Journal of Petrology, 48 (3), 627–645. DOI: 10.1093/petrology/egl075

Pearce, T. H. (1994). Recent Work on Oscillatory Zoning in Plagioclase. In: I. Parson (Ed.), Feldspars and their Reactions. Springer, p. 313-349. DOI: 10.1007/978-94-011-1106-5_8

Plechov, P. Y., Tsai, A. E., Shcherbakov, V. D., and Dirksen, O. V., 2008. Opacitization conditions of hornblende in Bezymyannyi volcano andesites (March 30, 1956 eruption). Petrology, 16 (1), 19–35. DOI: 10.1134/S0869591108010025

Pramumijoyo, S., and Sebrier, M. (1991). Neogene and quaternary fault kinematics around the Sunda Strait area, Indonesia. Journal of Southeast Asian Earth Sciences, 6 (2), 137–145. DOI: 10.1016/0743-9547(91)90106-8

Preece, K., Gertisser, R., Barclay, J., Berlo, K., and Herd, R. A. 2014. Pre- and syn-eruptive degassing and crystallisation processes of the 2010 and 2006 eruptions of Merapi volcano, Indonesia. Contributions to Mineralogy and Petrology, 168 (4), 1061. DOI: 10.1007/s00410-014-1061-z

Putirka, K. D. (2008). Thermometers and Barometers for Volcanic Systems. Reviews in Mineralogy and Geochemistry, 69 (1), 61–120. DOI: 10.2138/rmg.2008.69.3

Putirka, K. D. (2016). Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. American Mineralogist, 101 (4), 841–858. DOI: 10.2138/am-2016-5506

Ridolfi, F., 2021. Amp-TB2: An Updated Model for Calcic Amphibole Thermobarometry. Minerals, 11 (3), p.324. DOI: 10.3390/min11030324

Ruprecht, P., and Wörner, G., 2007. Variable regimes in magma systems documented in plagioclase zoning patterns: El Misti stratovolcano and Andahua monogenetic cones. Journal of Volcanology and Geothermal Research, 165 (3–4), p.142–162. DOI: 10.1016/j.jvolgeores.2007.06.002

Rusmana, E., Suwitodirjo, K., and Suharsono., 1991. Geological Map of Serang Quadrangle, Jawa. scale 1:250.000. Geological Research and Development Centre, Bandung.

Sendjaja, Y. A., Kimura, J. I., and Sunardi, E., 2009. Across-arc geochemical variation of Quaternary lavas in West Java, Indonesia: Mass-balance elucidation using arc basalt simulator model. Island Arc, 18 (1), p.201–224. DOI: 10.1111/j.1440-1738.2008.00641.x

Shibata, T., Yoshimoto, M., Fujii, T., and Nakada, S., 2015. Geochemical and Sr–Nd isotopic characteristics of Quaternary Magmas from the Pre–Komitake volcano. Journal of Mineralogical and Petrological Sciences, 110 (2), p.65–70. DOI: 10.2465/jmps.141022e

Sisson, T. W., and Grove, T. L., 1993. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology, 113 (2), p.143–166. DOI: 10.1007/BF00283225

Streck, M. J., 2008. Mineral Textures and Zoning as Evidence for Open System Processes. Reviews in Mineralogy and Geochemistry, 69 (1), p.595–622. DOI: 10.2138/rmg.2008.69.15

Streck, M. J., Broderick, C. A., Thornber, C. R., Clynne, M. A., and Pallister, J. S., 2008. Plagioclase populations and zoning in dacite of the 2004-2005 Mount St. Helens eruption: Constraints for magma origin and dynamics. In: D. R. Sherrod, W. E. Scott, and P. H. Stauffer (eds.), A Volcano Rekindled: The Renewed Eruption of Mount St. Helens, 2004–2006, U.S. Geological Survey Professional Paper 1750, p.791–808. DOI: 10.3133/pp175034

Streck, M. J., Leeman, W. P., and Chesley, J., 2007. High-magnesian andesite from Mount Shasta: A product of magma mixing and contamination, not a primitive mantle melt. Geology, 35 (4), p.351. DOI: 10.1130/G23286A.1

Sun, S., and McDonough, W. F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42 (1), p.313–345. DOI: 10.1144/GSL.SP.1989.042.01.19

Suntoko, H., and Mellawati, J., 2014. Studi Kelurusan Sesar Banten-1 di Calon Tapak. Proceeding, Seminar Nasional Geologi Nuklir Dan Sumber Daya Tambang Tahun 2014, Jakarta.

Suntoko, H., and Nugroho, A., 2011. Analisis Gradient Horizontal (Graviti) untuk Konfimasi Awal Sesar Permukaan di Tapak Banten. Jurnal Pengembangan Energi Nuklir, 13 (2), p.72–80.

Suntoko, H., Nurdin, M., Susilo, Y. S. B., and Hamzah, I., 2012. Pendeteksian Keberadaan Struktur Sesar pada Batuan Vulkanik dengan Metode Magnetik. EKSPLORIUM, 33 (2), p.111–120. DOI: https://dx.doi.org/10.17146/eksplorium.2012.33.2.2661

Viccaro, M., Giacomoni, P. P., Ferlito, C., and Cristofolini, R., 2010. Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts. Lithos, 116 (1–2), 77–91. DOI: 10.1016/j.lithos.2009.12.012

Wibowo, H. E., 2017. Petrological and Geochemical Study of Sundoro Volcano, Central Java, Indonesia : Temporal Variation in Differentiation and Source Processes in the Growth of an Individual Volcano. PhD Thesis at Department of Natural History Sciences, Hokkaido University. DOI: https://doi.org/10.14943/doctoral.k12699

Wibowo, H. E., Nakagawa, M., Kuritani, T., Furukawa, R., Prambada, O., and Harijoko, A., 2022. Petrological and Geochemical Study of Sundoro Volcano, Central Java, Indonesia: Temporal Variations in Differentiation and Source Processes During the Growth of an Individual Volcano. Journal of Petrology, 63 (9) p.1-22. DOI: 10.1093/petrology/egac083

Widagdo, A., Setijadi, R., Waluyo, G., and Purwasatriya, E. B. (2021). Kehadiran Patahan Geologi di Daerah Bojanegara, Kabupaten Serang, Propinsi Banten. GEOSAPTA, 7 (2), p.79. DOI: 10.20527/jg.v7i2.9439

Widiyantoro, S., and van der Hilst, R., 1997. Mantle structure beneath Indonesia inferred from high-resolution tomographic imaging. Geophysical Journal International, 130 (1), 167–182. DOI: 10.1111/j.1365-246X.1997.tb00996.x

IJOG as the journal holds copyright of the published papers.