Abstract
Detailed geomorphological map of a region provides necessary information on landforms to understand the variations of surface and subsurface processes. Geomorphological maps prepared based on a combined geospatial and field-observation approach are preliminary data for precise, prompt, and efficient watershed-level planning. The Kulsi is a significant left-bank tributary of the Brahmaputra. It has potential for agricultural, land, and water resources, but the region needs to catch up due to frequent climatic-geomorphic hazards. Therefore, this article aims to prepare an object-oriented detailed geomorphological map using geospatial tools. High-resolution satellite images and a digital elevation model were used to generate the detailed geomorphological map of the studied area. The resultant map is verified with extensive fieldwork. The investigated basin is characterized by structural and denudation hills, anthropogenetic escarpment; pediment plain, older and young alluvial plain; active and older flood plain; islands and sandbar deposits, and highly sinuous river and natural and artificial surface waterbodies. The research can contribute to local governments' and communities' land and water resource development plans.
Keywords: geomorphology, morphometry, satellite image, Geographic Information System
References
Agency of Natural Resources, Wetland Type, Wetland Department of Environmental Conservation, www.dec.vermont.gov
Aringoli, D., Calista, M., Gentili, B., Pambianchi, G., Sciarra, N., 2008. Geomorphological features and 3D modeling of Montelparo mass movement (Central Italy). Eng. Geol. 99 (1-2):70-84.
Bachri, S.; Shrestha, R.P.; Yulianto, F.; Sumarmi, S.; Utomo, K.S.B.; Aldianto, Y.E. 2021. Mapping Landform and Landslide Susceptibility Using Remote Sensing, GIS, and Field Observation in the Southern Cross Road, Malang Regency, East Java, Indonesia. Geosciences, 11, 4. https://doi.org/10.3390/geosciences11010004
Bocco, G., Mendoza, M., Velazquez, A. 2001. Remote sensing and GIS-based regional geomorphological mapping—a tool for land use planning in developing countries, Geomorphology, 39:211–219
Brice, J.C., (1982), Stream channel stability assessment. Report FHW A/RD-82/021, US Department of Transportation Federal Highway Administration, Washington, DC 42.
Catani, F., Fanti, R., Moretti, S., 2002. Geomorphologic risk assessment for cultural heritage conservation. In: Allison, R.J. (Ed.), Applied Geomorphology. John Wiley & Sons, Chichester, 303-316.
Chabrol, A., Gonnet, A., Fouache, E., Pavlopoulos, K., and Lecoeur, C. 2022. Geomorphology of the Kalamas river delta (Epirus, Greece), Journal of Maps, 1-12. https://doi.org/10.1080/17445647.2022.2046654.
Cooke, R.U., Doornkamp, J.C., 1990. Geomorphology in Environmental Management. A New Introduction. Second ed. Oxford University Press, Oxford, 410.
Cornelius, S.C., Sear, D.A., Carver, S.J., Heywood, D.I., 2006. GPS, GIS, and geomorphological fieldwork. Earth Surf. Process. Landforms 19 (9):777-787.
Douglas, I. 2020. Urban geomorphology. In: Douglas, I., Anderson, P.M.L., Goode, D., Houck, M.C., Maddox, D., Nagendra, H. & Yok, TP (Eds.) The Routledge Handbook of Urban Ecology. Abingdon: Routledge.
Dov, N. 1957. The ratio of relative and absolute altitude of Mt. Camel. Geog. Rev. 47:564- 569.
Embabi, N.S. and Moawad, M.B., 2014. A semi-automated approach for mapping geomorphology of El Bardawil Lake, Northern Sinai, Egypt, using integrated remote sensing and GIS techniques. The Egyptian Journal of Remote Sensing and Space Sciences, 17:41–60. https://dx.doi.org/10.1016/j.ejrs.2014.02.002.
Fan, Z., Zhang, B., Du, Z., Zheng, J., Jun Luo, NaNaWang, J. & Wang, Q. 2022. Geomorphological Regionalization using the Upscaled DEM: the Beijing-Tianjin-Hebei Area, China Case Study, Natureresearch-Scientific reports, 10:10532. https://doi.org/10.1038/s41598-020-66993-9.
FrancescoDramis Domenico Guida, Antonello Cestari, 2011. Chapter Three - Nature and Aims of Geomorphological Mapping, Developments in Earth Surface Processes, 15:39-73. https://doi.org/10.1016/B978-0-444-53446-0.00003-3
Garcia, G.P.B., Grohmann, C.H. 2019. DEM-based geomorphological mapping and landforms characterization of a tropical karst environment in southeastern Brazil, Journal of South American Earth Sciences, DOI: https://doi.org/10.1016/j.jsames.2019.04.013
Hack, J. T., 1973. Stream profile analysis and stream gradient index, J. Res. US Geol. Survey, 1(4):421-429.
Imsong, W., Choudhary, S., Phukan, S., and Duarah, B.P. 2018. Morpho-dynamics of the Kulsi River Basin in the northern front of Shillong Plateau: Exhibiting episodic inundation and channel migration” J. Earth Syst. Sci, Indian Academy of Sciences,127(5):1-15. https://doi.org/10.1007/s12040-017-0904-1.
Lemenkova, P., 2019. Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Polish Cartographical Review, 51(4):181–194. DOI: 10.2478/pcr-2019-0015
Leopold, L. B., and Maddock, T. Jr., 1953. The hydraulic geometry of stream channels and some physiographic implications; Geol. Surv. Prof. Paper, 252.
Mackin, H. J. 1948. Concept of the graded river; Geol. Soc. Am. 55:463-512.
Meij, W. M., Meijles, E.W., Marcos, D., Harkema, T.T. L., Candel, J.H.J., Maas, G.J. 2022. Comparing geomorphological maps made manually and by deep learning, Earth Surf. Process. Landforms. 47:1089–1107. DOI: 10.1002/esp.5305
Napieralski, J., Barr, I., Kamp, U., & Kervyn De Meerendre, M. (2013). Remote Sensing and GIScience in Geomorphological Mapping. In J. F. Schroder (Ed.), Treatise in Geomorphology: Volume 3: Remote Sensing and GIScience in Geomorphology. 3:187-227). San Francisco: Academic Press.
Natural Resources Conservation Services, 2008. Hydrogeomorphic Wetland Classification System: An Overview and modification to Better Meet the Needs of the Natural Resources Conservation Service, Technical Note No. 190-8-76. United States Department of Agriculture.
New Mexico Environment Department, 2012. New Mexico Wetlands -Wetland Functions, Technical Guide, Surface Water Quality Bureau Wetlands Program, www.env.nm.gov
Pall, I.A., Meraj, G. & Romshoo, S.A. Applying integrated remote sensing and field-based approach to map glacial landform features of the Machoi Glacier valley, NW Himalaya. SN Appl. Sci. 1, 488 (2019). https://doi.org/10.1007/s42452-019-0503-7
Patel, N.K., Pati, P. 2022. Mapping of the Buried Paleochannels on the Terminal Fans in the Western Ganga Plain: A Geomorphological and Ground Penetrating Radar-based Approach. J Geol Soc India 98, 525–537 (). https://doi.org/10.1007/s12594-022-2010-5
Prodanov, B., Lambev, T., Bekova, R., Kotsev, I., 2019, Applying Unmanned Aerial Vehicles for High-Resolution Geomorphological Mapping of the Ahtopol Coastal Sector (Bulgarian Black Sea Coast), 465-472, 219 th International Multidisciplinary Scientific GeoConference SGEM 2019, https://doi.org/10.5593/sgem2019/2.2
Rao, D.P., 2002. Remote sensing application in geomorphology. Trop. Ecol. 43 (1):49-59.
Reddy, G.P.O. (2018). Remote Sensing and GIS for Geomorphological Mapping. In: Reddy, G., Singh, S. (eds) Geospatial Technologies in Land Resources Mapping, Monitoring and Management. Geotechnologies and the Environment, 21:223-252. Springer, Cham. https://doi.org/10.1007/978-3-319-78711-4_12
Riley, S.J. (1999). Index that quantifies topographic heterogeneity, Internet. J. Sci. 5:23–27.
Shah, R.A., Lone, S.A. (2019). Hydro-geomorphological mapping using geospatial techniques for assessing the groundwater potential of Rambiara river basin, western Himalayas. Appl Water Sci. 9(64). https://doi.org/10.1007/s13201-019-0941-9
Smith, M.J., Paron, P., Griffiths, J.S. 2011. Geomorphological mapping: methods and applications, Developments in earth surface process, 15. Elsevier.
Tate, J., 2006. Terrain analysis for decision-making. In: Mang, R., Hausler, H. (Eds.), International Handbook Military Geography. Ministry of Defense, Vienna, 321-333.
Teeuw, R.M., 2007. Mapping Hazardous Terrain Using Remote Sensing. Geological Society, London, Special Publication 283.
Thomson, E.H., Sorenson, E.R. 2005. Wetland, Woodland, and Wildland-A Guide to the natural committee of Vermont, Vermont Department of Fish and Wildlife and The Nature Conservancy.
Van Asselen, S., Seijmonsbergen, A.C., 2006. Expert-driven semi-automated geomorphological mapping for a mountainous area using a laser DTM. Geomorphology 78:309-320.
Van Lanen, R.J., Kosian, M.C., Groenewoudt, B.J. & Jansma, E. 2015. Finding a way: Modeling landscape prerequisites for Roman and early-medieval routes in the Netherlands. Geoarchaeology, 30(3):200–222. https://doi.org/10.1002/gea.21510
Whipple, K., and Tucker, G., 2002, Implications of sediment flux dependent river incision models for landscape evolution, J. Geophys. Res., 107 (B2), ETG 3-1-21 https://doi.org/10.1029/200JB000044.
Whittaker, A. C., Cowie, P. A., Attal, M., Tucker, G. E., and Roberts, G. P., (2007), Bedrock channel adjustment to tectonic forcing: Implications for predicting river incision rates; Geol. Soc. Am. 35 (2):103-106.
Yin, Dubey, C. S., Webb, A. A. G., Kelty, T. K., Grove, M., Gehrels, G. E., and Burges, W. P., 2010. Geologic correlation of the Himalayan orogen and Indian craton: Part I, Structural geology, U-Pb zircon geochronology and tectonic evolution of the Shillong Plateau and its neighboring regions in NE India, Geol. Soc. Am. Bull, 122:336-359.
Zinck, J. A. 2013. Geopedology: elements of geomorphology for soil geohazard studies, Faculty of Geo-information Science and Earth Observation, Enschede, the Netherland.