Abstract
This work presents microscopic-, whole-rock geochemical- , and K-Ar age data for Tanjung Berikat Granitoid at the easternmost part of Bangka Island. Some selected samples are in the range of monzogranite and granodiorite based on microscopic analysis. The rocks are characterized by a wide range in SiO2 (62.75 - 70.17 wt %), high-K calcalkaline to shoshonitic affinity, and ferroan signature. Very good correlation values of bivariate SiO2 plotted against other major oxides, similar spider diagrams normalized to the composition of the N-MORB and chondrite-normalized REE diagrams demonstrate the same origin and crystallization mechanism of the granitoid. The I-type nature of the studied granite is based on the hornblende existence, metaluminous character, negative SiO2 to P2O5 correlation, and volcanic arc characteristics of the rock. Tanjung Berikat Granitoid was crystallized in the mid ̶ late Early Cretaceous at 125.5 ± 2.8 Ma and 109.4 ± 2.5 Ma based on the K-Ar dating method.
Keywords: granitoid, geochemistry, I-type, Bangka Island
References
Açlan, M. & Altun, Y., 2018. Syn-collisional I-type Esenköy pluton (eastern Anatolia-Turkey): An indication for collision between Arabian and Eurasian plates. J. Afr. Earth Sci., 142, 1-11.
Barber, A.J., 2000. The origin of the Woyla Terranes in Sumatra and the Late Mesozoic evolution of the Sundaland margin. J. Asian Earth Sci., 18(6), 713-738.
Barber, A.J. & Crow, M.J., 2003. An evaluation of plate tectonic models for the development of Sumatra. Gondwana Res, 6(1), 1-28.
Barber, A.J. & Crow, M.J., 2009. Structure of Sumatra and its implications for the tectonic assembly of Southeast Asia and the destruction of Paleotethys. Isl. Arc, 18(1), 3-20. https://dx.doi.org/10.1111/j.1440-1738.2008.00631.x
Boynton, W.V., 1984. Cosmochemistry of the rare earth elements: meteorite studies. In Developments in geochemistry, (Elsevier), pp.63-114.
Breitfeld, H.T., Hall, R., Galin, T., Forster, M.A. & BouDagher-Fadel, M.K., 2017. A Triassic to Cretaceous Sundaland-Pacific subduction margin in West Sarawak, Borneo. Tectonophysics, 694, 35-56.
Chappell, B.W. & White, A.J.R., 1992. I- and S- type granites in the Lachlan fold belt. Trans. Roy. Soc. Edinb. Earth Sci., 83, 1–26.
Chappell, B.W., Bryant, C.J. & Wyborn, D., 2012. Peraluminous I-type granites. Lithos, 153, 142–153.
Clarke, M.C.G. & Beddoe-Stephens, B., 1987. Geochemistry, mineralogy and plate tectonic setting of a Late Cretaceous Sn-W granite from Sumatra, Indonesia. Mineral. Mag., 51(361), 371-387.
Cobbing, E. J., Pitfield, P. E. J., Darbyshire, D. P. F. & Mallick, D. I. J., 1992. The granites of the South-East Asian tin belt, Overseas Memoir 10, British Geological Survey.
Cobbing, E.J., 2005. Granites, Geological Society, London, Memoirs, 31(1), pp.54-62.
Cottam, M.A., Hall, R. & Ghani, A.A., 2013. Late Cretaceous and Cenozoic tectonics of the Malay Peninsula constrained by thermochronology. J Asian Earth Sci., 76, 241-257. https://dx.doi.org/10.1016/j.jseaes.2013.04.029
Davies, L., Hall, R. & Armstrong, R., 2014. Cretaceous crust in SW Borneo: petrological, geochemical and geochronological constraints from the Schwaner Mountains. Proceedings Indonesian Petroleum Association, 38th Annual Convention and Exhibition, IPA14-G-025.
Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J. & Frost, C.D., 2001. A geochemical classification for granitic rocks. J. Petrol., 42(11), 2033-2048.
Ghani, A.A., 2000. The Western Belt granite of Peninsular Malaysia: some emergent problems on granite classification and its implication. Geosci. J., 4(4), 283-293.
Ghani, A.A., Searle, M., Robb, L. & Chung, S.L., 2013. Transitional IS type characteristic in the Main Range Granite, Peninsular Malaysia. J Asian Earth Sci., 76, 225-240. https://dx.doi.org/10.1016/j.jseaes.2013.05.013.
Hall, R. & Sevastjanova, I., 2012. Australian crust in Indonesia. Aust. J. Earth Sci., 59(6), 827-844. https://dx.doi.org/10.1080/08120099.2012.692335
Hazad, F.I., Ghani, A.A. & Lo, C.H., 2019. Arc related dioritic–granodioritic magmatism from southeastern Peninsular Malaysia and its tectonic implication. Cretac. Res., 95, 208-224.
Hennig, J., Breitfeld, H.T., Hall, R. & Nugraha, A.S., 2017. The Mesozoic tectono-magmatic evolution at the Paleo-Pacific subduction zone in West Borneo. Gondwana Res, 48, 292-310. https://dx.doi.org/10.1016/j.gr.2017.05.001.
Irzon, R. & Abdullah, B., 2016. Geochemistry of Ophiolite Complex in North Konawe, Southeast Sulawesi. Eksplorium, 37(2), 101-114.
Irzon, R., 2017. Geochemistry of Late Triassic weak Peraluminous A-Type Karimun Granite, Karimun Regency, Riau Islands Province. Indonesian Journal on Geoscience, 4(1), 21-37.
Irzon, R. & Abdullah, B., 2018. Element Mobilization During Weathering Process of Ultramafic Complex in North Konawe Regency, Southeast Sulawesi Based on A Profile from Asera. Indonesian Journal on Geoscience, 5(3), 277-290.
Irzon, R., Syafri, I., Hutabarat, J., Sendjaja, P. & Permanadewi, S., 2018. Heavy metals content and pollution in tin tailings from Singkep Island, Riau, Indonesia. Sains Malays., 47(11), 2609-2616. https://dx.doi.org/10.17576/jsm-2018-4711-03.
Irzon, R., Kurnia, K. & Haryanto, A.D., 2020. Presisi Pengukuran Produk Samping Tambang Timah Nudur Menggunakan Analisis XRF dan Peluang Ekonomi Produknya. Jurnal Teknologi Mineral dan Batubara, 16(2), 69-79 (In Bahasa with English Abstract).
Irzon, R., Syafri, I., Ghani, A.A., Prabowo, A., Hutabarat, J. & Sendjaja, P., 2020. Petrography and geochemistry of the Pinkish Lagoi Granite, Bintan Island: Implication to magmatic differentiation, classification, and tectonic history. Bull. Geol. Soc. Malays., 69, 27-37. https://doi.org/10.7186/bgsm69202003
Irzon, R., Syafri, I., Suwarna, N., Hutabarat, J., Sendjaja, P. & Setiawan, V.E., 2021. Geochemistry of Granitoids in Central Sumatra: An Identification of Plate Extension during Triassic. Geol. Acta, 19, 1-14.
Jamil, A., Ghani, A.A., Zaw, K., Osman, S. & Quek, L.X., 2016. Origin and tectonic implications of the∼ 200 Ma, collision-related Jerai pluton of the Western Granite Belt, Peninsular Malaysia. J Asian Earth Sci., 127, 32-46. https://dx.doi.org/10.1016/j.jseaes.2016.06.004
Jiang, H., Li, W.Q., Jiang, S.Y., Wang, H. & Wei, X.P., 2017. Geochronological, geochemical and Sr-Nd-Hf isotopic constraints on the petrogenesis of Late Cretaceous A-type granites from the Sibumasu Block, Southern Myanmar, SE Asia. Lithos, 268, 32-47. https://dx.doi.org/10.1016/j.lithos.2016.11.005.
Karaoğlan, F., Parlak, O., Klötzli, U., Koller, F. & Rızaoğlu, T., 2013. Age and duration of intra-oceanic arc volcanism built on a suprasubduction zone type oceanic crust in southern Neotethys, SE Anatolia. Geosci. Front., 4(4), 399-408. https://doi.org/10.1016/j.gsf.2012.11.011.
Kaygusuz, A., Sipahi, F., Ilbeyli, N., Arslan, M., Chen, B. & Aydınçakır, E., 2013. Petrogenesis of the Late Cretaceous Turnagöl intrusion in the eastern Pontides: Implications for magma genesis in the arc setting. Geosci. Front., 4(4), 423-438.
Kazemi, K., Kananian, A., Xiao, Y. & Sarjoughian, F., 2019. Petrogenesis of Middle-Eocene granitoids and their Mafic microgranular enclaves in central Urmia-Dokhtar Magmatic Arc (Iran): evidence for interaction between felsic and mafic magmas. Geosci. Front., 10(2), 705-723. https://doi.org/10.1016/j.gsf.2018.04.006.
Kirk, H.J.C., 1968 The igneous rocks of the Sarawak and Sabah. Geological Survey Borneo Region, Malaysia, Bull, 5.
Ko, U.K., 1986. Preliminary synthesis of the geology of Bangka Island, Indonesia. Geosea Proceeding V. Bull. Geol. Soc. Malays., 20, 81-96.
Liu, D., Huang, Q., Fan, S., Zhang, L., Shi, R. & Ding, L., 2014. Subduction of the Bangong–Nujiang Ocean: constraints from granites in the Bangong Co area, Tibet. Geol. J., 49(2), 188-206.
Liu, L., Hu, R.Z., Zhong, H., Yang, J.H., Kang, L.F., Zhang, X.C., Fu, Y.Z., Mao, W. & Tang, Y.W., 2020. Petrogenesis of multistage S-type granites from the Malay Peninsula in the Southeast Asian tin belt and their relationship to Tethyan evolution. Gondwana Res. https://doi.org/10.1016/j.gr.2020.02.013.
Loiselle, M.C., & Wones, D.R., 1979. Characteristics and origin of anorogenic granites. Geological Society of America Abstracts with Programs, 11, 468.
Mangga, S.A. & Djamal, B., 1994. Geological Map of the North Bangka Quadrangle, Sumatera, scale 1: 250,000, Geological Research and Development Centre, Indonesia.
Margono, U., Supandjono, R.J.B.& Partoyo, E., 1995. Geological Map of the South Bangka Quadrangle, Sumatera, scale 1: 250,000. Geological Research and Development Centre, Indonesia.
Maurice, A.E., Bakhit, B.R., Basta, F.F. & Khiamy, A.A., 2013. Geochemistry of gabbros and granitoids (M-and I-types) from the Nubian Shield of Egypt: Roots of Neoproterozoic intra-oceanic island arc. Precambrian Res., 224, 397-411.
Metcalfe, I., 2011. Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Res., 19(1), 3-21. https://dx.doi.org/10.1016/j.gr.2010.02.016.
Metcalfe, I., 2013. Tectonic evolution of the Malay Peninsula. J Asian Earth Sci., 76, 195-213. https://dx.doi.org/10.1016/j.jseaes.2012.12.011.
Middlemost, E.A., 1994. Naming materials in the magma/igneous rock system. Earth-Sci. Rev., 37(3-4), 215-224.
Muir, R.J., Fitches, W.R. & Maltman, A.J., 1994. The Rhinns Complex: Proterozoic basement on Islay and Colonsay, Inner Hebrides, Scotland, and on Inishtrahull, NW Ireland. Earth Environ Sci Trans R Soc Edinb , 85(1), 77-90.
Ng, S.W.P., Whitehouse, M.J., Roselee, M.H., Teschner, C., Murtadha, S., Oliver, G.J., Ghani, A.A. & Chang, S.C., 2017. Late triassic granites from Bangka, Indonesia: A continuation of the main range granite province of the South-East Asian tin belt. J Asian Earth Sci., 138, 548-561. https://dx.doi.org/10.1016/j.jseaes.2017.03.002.
Oliver, G., Zaw, K., Hotson, M., Meffre, S. & Manka, T., 2014. U–Pb zircon geochronology of Early Permian to Late Triassic rocks from Singapore and Johor: A plate tectonic reinterpretation. Gondwana Res, 26(1), 132-143.
Pearce, J.A., Harris, N.B. & Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25(4), 956-983.
Peccerillo, A. & Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol., 58(1), 63-81.
Pitcher, W.S., 1983. Granite Type and Tectonic Environment. In: Hsu K (ed) Mountain Building Process. Academic Press. London, p.19-40.
Sarjoughian, F. & Kananian, A., 2017. Zircon U-Pb geochronology and emplacement history of intrusive rocks in the Ardestan section, central Iran. Geol. Acta, 15(1), 25-36.
Schwartz, M.O., Rajah, S.S., Askury, A.K., Putthapiban, P. & Djaswadi, S., 1995. The southeast Asian tin belt. Earth Sci Rev, 38(2-4), 95-293.
Searle, M.P., Whitehouse, M.J., Robb, L.J., Ghani, A.A., Hutchison, C.S., Sone, M., Ng, S.P., Roselee, M.H., Chung, S.L. & Oliver, G.J.H., 2012. Tectonic evolution of the Sibumasu–Indochina terrane collision zone in Thailand and Malaysia: constraints from new U–Pb zircon chronology of SE Asian tin granitoids. J Geol Soc, 169(4), 489-500. https://dx.doi.org/10.1144/0016-76492011-107.
Setiawan, I., Takahashi, R. & Imai, A., 2017. Petrochemistry of granitoids in Sibolga and its surrounding areas, North Sumatra, Indonesia. Resour. Geol., 67(3), 254-278. https://dx.doi.org/10.1111/rge.12132
Steiger, R.H. & Jäger, E., 1977. Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth Planet. Sci. Lett., 36(3), 359-362.
Streckeisen, A., 1976. To each plutonic rock its proper name. Earth Sci Rev, 12(1), 1-33.
Sun, S.S. & McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313-345.
Topuz, G., Candan, O., Zack, T., Chen, F. & Li, Q.L., 2019. Origin and significance of Early Miocene high potassium I-type granite plutonism in the East Anatolian plateau (the Taşlıçay intrusion). Lithos, 348, 105210.
Wang, D. & Shu, L., 2012. Late Mesozoic basin and range tectonics and related magmatism in Southeast China. Geosci. Front., 3(2), 109-124. https://dx.doi.org/10.1016/j.gsf.2011.11.007
White, A.J.R., 1979. Source of Granite Magmas. Geological Society of America Abstracts with Programs, 11, 539.
Yanbo, C. & Jingwen, M., 2010. Age and geochemistry of granites in Gejiu area, Yunnan province, SW China: constraints on their petrogenesis and tectonic setting. Lithos, 120(3-4), 258-276.
Yang, J.H., Zhou, M.F., Hu, R.Z., Zhong, H., Williams-Jones, A.E., Liu, L., Zhang, X.C., Fu, Y.Z. & Mao, W., 2020. Granite-Related Tin Metallogenic Events and Key Controlling Factors in Peninsular Malaysia, Southeast Asia: New Insights from Cassiterite U-Pb Dating and Zircon Geochemistry. Econ Geol., 115(3), 581-601.
Zhao, L., Wang, L., Tian, M. & Wu, F., 2017. Geochemistry and zircon U-Pb geochronology of the rhyolitic tuff on Port Island, Hong Kong: implications for early Cretaceous tectonic setting. Geosci. Front., 8(3), 565-581. https://dx.doi.org/10.1016/j.gsf.2016.05.009.
Zheng, Y.F., 2019. Subduction zone geochemistry. Geosci. Front., 10(4), 1223-1254. https://doi.org/10.1016/j.gsf.2019.02.003.