Geochemical Evolution and Groundwater Flow System in Batujajar Groundwater Basin Area, West Java, Indonesia
DOI:
https://doi.org/10.17014/ijog.7.1.87-104Keywords:
hydrochemistry, stable isotope, groundwater flow, Batujajar, BandungAbstract
DOI:10.17014/ijog.7.1.87-104
Batujajar and its surrounding areas, situated in the west of the Bandung Basin, are geologically composed of various Tertiary rock formations with complex fold and fault systems. Springs and drilled wells in sandstone aquifers, tuffaceous sand, and tuffaceous breccias mark the development of their aquifer systems. This study aimed to determine the characteristics of the hydrogeochemistry by analyzing major ions and stable isotopes (18O and 2H) of thirty-four hydrogeological objects. The groundwater flow pattern in this area is controlled by northwest-southeast lineament, as indicated by the emergence of springs along the transition zone between areas with high and low lineament density. In order of dominance, the groundwater facies are as follows:Ca-Mg-HCO3>Ca-HCO3>Ca-Na-Mg-HCO3>Na-Ca-HCO3. Hydrochemical evolutions were detected from the change of cations from Ca2+ to Mg2+ and then Na+, and this is believed to be the product of cation exchange and dissolution of silicate minerals. However, evolutions toward anion changes were not apparent yet, meaning that HCO3- ions still prevail, or in other words the groundwater flow system is local. Nevertheless, the geological and hydrogeochemical analyses, along with the relative compositions of stable isotopes, revealed that the groundwater had three systems, namely shallow, intermediate, and deep groundwater flows; all of which were segmented in three subgroundwater basins (Sub-GWB). Aquifer systems with shallow to intermediate groundwater flow were found in Sub-GWB-A, Sub-GWB-B, and Sub-GWB-C, while the other ones with deep groundwater flow system were identified in Sub-GWB-B and Sub-GWB-C.Fracture system has an important role as a connector between recharge system in hilly areas and discharge system in plain areas.
References
Anonymous, 2017. Peraturan Menteri ESDM No. 2 Tahun 2017 Tentang Cekungan Air Tanah di Indonesia. Kementerian Energi dan Sumber Daya Mineral.
Al Charideh, A., 2011. Geochemical and isotopic characterization of groundwater from shallow and deep limestone aquifers system of Aleppo Basin (northern Syria). Environmental Earth Sciences, 65, p.1157-1168. DOI: 10.1007/s12665-011-1364-6
van Bemmelen, R.W., 1949. The Geology of Indonesia, Part I General Geology. The Hague, Netherland.
Clark, I., 2015. Groundwater geochemistry and isotopes.CRC Press.
Dam, M.A.C. and Suparan, P.,1992. Geology of the Bandung Basin. Report with the 1:50.000 Quaternary Geological Map of the Bandung Basin, Geological Research and Development Centre, Bandung.
Dam, M.A.C.,1994. The Late Quaternary Evolution of The Bandung Basin, West Java, Indonesia. Department or Quaternary Geology, Faculty of Earth Sciences,Vrije Universiteit, De Boele Laan 1085, Amsterdam.
Delinom, R.M., 2009. Structural Geology Controls on Groundwater Flow: Lembang Fault Case Study, West Java, Indonesia. Hydrological Journal, 17 (4), p.1011-1023, Springer Verlag, 2009, Germany. DOI:10.1007/s10040-009-0453-z
Eriksson, E., 1983. Stable Isotopes and Tritium in Precipitation, Guide Book on Nuclear Techniques in Hydrology. Technical Report Series No. 91, IAEA, Vienna.
Gaillardet, J., Dupre, B., Louvat, P., and Allegre, C.J., 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159, p.3-30. DOI:10.1016/S0009-2541(99)00031-5
Geyh, M.A., 1991. Isotopic Hydrological Study in the Bandung Basin Indonesia. Laporan-Penelitian.
Gibbs, R.J., 1970. Mechanisms controlling world water chemistry. Science, 170 (3962), p.1088-1090. DOI:10.1126/science.170.3962.1088
Fetter, C.W., 1994. Applied Hydrogeology. Prentice-Hall, Inc., New Jersey, 598pp.
Fetter, C.W., 2001. Applied Hydrogeology. 4th Edition, Prentice-Hall, New Jersey.
Freeze, R.A. and Cherry, J.A., 1979. Groundwater. Prentice-Hall, New Jersey, 604pp.
Hem, J.D., 1992.Study and interpretation of the chemical characteristics of natural waters. US Geological Survey, Water-Supply Paper 2254.
IWACO and Waseco,1991. Studi Hidrologi Bandung, Laporan Utama Tambahan 2. Sumberdaya Airtanah,West Java Provincial Water Sources Master Plan or Water Supply.
Kehew, A.E., 2001. Applied Chemical Hydrogeology, Prentice-Hall, New Jersey.
Kim, G.B., 2003. Construction of a Lineament Density Map with Arc View and Avenue. Korea Water Resource Corporation, South Korea.
Koesoemadinata, R.P. and Hartono, D., 1981. Stratigrafi dan Sedimentasi Daerah Bandung. Proceedings of Indonesian Association of Geologist Annual Conference, X, Bandung, p.318-336.
Koesmono, 1976. Peta Geologi Lembar Sindangbarang, Jawa. Direktorat Geologi, Departemen Pertambangan. R. I. Bandung.
Koesmono, Kusnama, and Suwarna, N., 1996. Peta Geologi Lembar Sindangbarang, Jawa, Skala 1:100.000, 2nd Edition. Pusat Penelitian dan Pengembangan Geologi, Bandung.
Li, J., Liu, J., Pang, Z., and Wang, X., 2013. Characteristics of Chemistry and Stable Isotopes in Groundwater of the Chaobai River Catchment, Beijing. Procedia Earth Planetary Science, 7, p.487-490. DOI:10.1016/j.proeps.2013.03.092.
Mandel, S. and Shiftan, Z., 1981. Groundwater Resources. Investigation and Development, Academic Press, New York.
Matahelumual, B.C. and Wahyudin, 2010. Penelitian Hidrogeologi Daerah Imbuhan Air Tanah Dengan Metode Isotop dan Hidrokimia di Cekungan Air Tanah Bandung-Soreang, Provinsi Jawa Barat (Tahap III). Pusat Lingkungan Geologi, Badan Geologi, Bandung.
Mazor, E. 2003. Chemical and Isotopic Groundwater Hydrology, 3rd Edition. Boca Raton: CRC Press, 352pp. DOI:10.1201/9780203912959
Schoeller, H.,1977. Geochemistry of groundwaters. In: Groundwater studies-an international guide for research and practice. UNESCO, Paris, p.1-18.
Schwartz, F.W. and Zhang, H., 2003. Fundamentals of Groundwater, John Wiley & Sons, New York.
Silitonga, P.H., 1973. Peta Geologi Lembar Bandung, Jawa, Skala 1:100.000. Pusat Penelitian dan Pengembangan Geologi.
Singhal, B.B.S. and Gupta, R.P., 1999. Applied Hydrogeology of Fractured Rocks. Kluwer Academic Publisher, Netherlands, 415pp.
Sophocleous, M.A., 2004. Groundwater recharge and water budgets of the Kansas High Plains and related aquifers. Kansas Geological Survey Bulletin, 249, p.1-102.
Sudjatmiko, 1972. Peta Geologi Lembar Cianjur-9/XIII-E, Jawa Barat. Pusat Penelitian dan Pengembangan Geologi, Bandung.
Sudjatmiko, 2003. Peta Geologi Lembar Cianjur, Jawa, Skala 1:100.000. Pusat Penelitian dan Pengembangan Geologi, Bandung.
Sunarwan, B., 1997. Penerapan Metode Hidrokimia-Isotop Oksigen (18O), Deuterium (2H) dan Tritium (3H), dalam Karakterisasi Akuifer Air Tanah pada Sistem Akuifer Bahan Vulkanik. Studi Kasus: Kawasan Padalarang-Cimahi, Bandung. Tesis Magister Program Studi Teknik Geologi ITB.
Sutrisno, S., 1983. Peta Hidrogeologi skala 1:250.000, Lembar Bandung. Direktorat Geologi Tata Lingkungan, Bandung.
Todd, D.K., 1984. Groundwater Hydrology, John Wiley & Sons, 552pp.
Toth, J., 2009. Gravitational systems of groundwater flow: theory, evaluation, utilization. Cambridge University Press. DOI:10.1017/CBO978051157654.
Wahyudin, Mattahelumual, B.C., Dijono, and Satriyo, 2013. Karakteristik Isotop dan Hidrokimia Hidrokimia Pada Sistem Aliran Air Tanah Daerah Bandung dan Sekitarnya. Majalah Geologi Indonesia, 24 (2), p.117-128.
Wang, H., Jiang, X.W., Wan, L., Han, G., and Guo, H., 2015. Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin. Journal of Hydrology, 527, p.433-441. DOI:10.1016/j.jhydrol.2015.04.063
Wu, J., Li, P., Qian, H., Duan, Z., and Zhang, X., 2013. Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: a case study in Laohebaphosphorite mine in Sichuan, China. Arabian Journal Geosciences. DOI:10.1007/s12517-013-1057-4.
Yuan, J., Xu, F., Deng, G., Tang, Y., and Li, P., 2017. Hydrogeochemistry of Shallow Groundwater in a Karst Aquifer System of Bijie City, Guizhou Province. Water, 9 (8), 16pp. DOI:10.3390/w9080625