Peak Metamorphic Conditions of Garnet Amphibolite from Luk Ulo Complex, Central Java, Indonesia: Implications for Medium-Pressure/High-Temperature Metamorphism in the Central Indonesian Accretionary Collision Complex
PDF

Keywords

Luk Ulo Complex
Central Java
garnet amphibolite
medium-pressure/high-temperature
metamorphic condition

How to Cite

Setiawan, N. I., Osanai, Y., Nakano, N., Adachi, T., Hendratno, A., Sasongko, W., & Ansori, C. (2020). Peak Metamorphic Conditions of Garnet Amphibolite from Luk Ulo Complex, Central Java, Indonesia: Implications for Medium-Pressure/High-Temperature Metamorphism in the Central Indonesian Accretionary Collision Complex. Indonesian Journal on Geoscience, 7(3), 225–239. https://doi.org/10.17014/ijog.7.3.225-239

Abstract

DOI:10.17014/ijog.7.3.225-239

Garnet amphibolites, which suggest medium-pressure/high-temperature (MP/HT), are widely recognized in Luk Ulo Complex, Central Java. Their occurrences associated with high-pressure/low-temperature (HP/LT; eclogite, blueschist) metamorphic rocks in the Luk Ulo Complex will provide important constraint on the geodynamic model of Central Indonesian Accretionary Collision Complex (CIACC). This study aimed to estimates P-T metamorphic condition of garnet amphibolite from Luk Ulo Complex by using mineral parageneses, thermodynamic data, and NCKFMASHO pseudosection. Prograde stage assemblages represented by inclusions in the garnet, which are garnet core, zoisite, titanite, apatite, and quartz. Mineral coexistences at the peak P-T condition are garnet rim, magnesio-hornblende, zoisite, titanite, quartz, albite, and phengite. The retrograde stage represented by secondary minerals fill the crack in the garnet and other minerals, which are chlorite and quartz. P-T metamorphic condition of garnet amphibolite can only be interpreted from the peak metamorphic stage. The temperature of the garnet amphibolite is estimated using the garnet-amphibole and garnet-phengite geothermometers. Meanwhile, the pressure condition is estimated from phengite geobarometer. The results were compared to the stability and compositions of the phases in NCKFMASHO pseudosection in order to constrain the peak P-T metamorphic conditions. It is concluded that the peak P-T metamorphic condition for garnet amphibolite is 0.9 - 1.4 GPa and 558 - 606 ºC. The estimated peak P-T metamorphic temperature is higher compared to the previously published gradient geothermal of eclogite and tourmaline-eclogite in the Luk Ulo Complex. The MP/HT (amphibolite) and HP/LT (blueschist and eclogite) metamorphic rocks could have similar metamorphic ages if both footwall and hanging wall had initially very high thermal gradients and the rate of subduction was very slow (10 km/Ma or less).

https://doi.org/10.17014/ijog.7.3.225-239
PDF

References

Anczkiewicz, Platt, J.P., Thirlwall, M.F., and Wakabayashi, J., 2004. Franciscan subduction off to a slow start: evidence from high-precision Lu-Hf garnet ages on high grade-blocks. Earth and Planetary Science Letters, 225, p.147-161. DOI:10.1016/j.epsl.2004.06.003

Armbruster, T., Bonazzi, P., Akasaka, M., Bermanec, V., Chopin, C., Giere, R., Heuss- Assbichler, S., Liebscher, A., Menchetti, S., Pan, Y., and Pasero, M., 2006. Recommended nomenclature of epidote-group minerals, European Journal of Mineralogy, 18, p.551-567. DOI:10.1127/0935-1221/2006/0018-0551

Asikin, S., Handoyo, A., Busono, A., and Gafoer, S., 2007. Geological map of the Kebumen Quadrangles, Jawa. Scale 1:100,000. Geological Research and Development Centre of Indonesia, 2nd Edition.

Bhowmik, S.K. and Ao, A., 2016. Subduction initiation in the Neo-Tethys: constraints from counterclockwise P-T paths in amphibolite

rocks of the Nagaland Ophiolite Complex, India. Journal of Metamorphic Geology, 34, p.17-44. DOI:10.1111/jmg.12169

Böhnke, M., Bröcker, M., Maulana, A., Klemd, R., Berndt, J., and Baier, H., 2019. Geochronology and Zr-in-rutile thermometry of highpressure/low-temperature metamorphic rocks from the Bantimala Complex, SW Sulawesi, Indonesia. Lithos, 324-325, p. 340-355. DOI:10.1016/j.lithos.2018.11.020

Connolly, J.A.D., 2005. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters, 236, p.524-541. DOI:10.1016/j.epsl.2005.04.033

Deer, W.A., Howie, R.A., and Zussman, J., 1992. An Introduction to the rock-forming minerals, 2nd Ed., Longman Group, U.K, 696pp.

Diener, J.F.A., Powell, R., White, R.W., and Holland, T.J.B., 2007. A new thermodynamic model for clino- and orthoamphiboles in the system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O. Journal of Metamorphic Geology, 25, p.631-656. DOI:10.1111/j.1525-

2007.00720.x

Droop, G.T.R., 1987. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical

Magazine, 51, p.431-435. DOI:10.1180/minmag.1987.051.361.10

Gnos, E., 1998. Peak metamorphic conditions of garnet amphibolites beneath the Semail Ophiolite: implications for an inverted pressure gradient. International Geology Review, 40, p.281-304. DOI:10.1080/00206819809465210

Graham, C.H. and Powell, R., 1984. A garnet-hornblende geothermometer: calibration, testing, and application to the Pelona Schist, Southern California. Journal of Metamorphic Geology, 2, p.13-31. DOI:10.1111/j.1525-1314.1984.tb00282.x

Green T.H. and Hellman, P.L., 1982. Fe–Mg partitioning between coexisting garnet and phengite at high pressure, and comments on a garnet-phengite geothermometer. Lithos, 15, p.253-266. DOI:10.1016/0024-4937(82)90017-2

Hoffmann, J., Brocker, M., Setiawan, N.I., Klemd, R., Berndt, J., Maulana, A., and Baier, H., 2019. Age constraints on high-pressure/low-temperature metamorphism and sedimentation in the Luk Ulo Complex (Java, Indonesia). Lithos, 324-325, p.747-762.

DOI:10.1016/j.lithos.2018.11.019

Holland, T., Baker, J., and Powell, R., 1998. Mixing properties and activity-composition relationships of chlorites in the system MgOFeO-Al2O3-SiO2-H2O. European Journal of Mineralogy, 10, p.395-406. DOI:10.1127/ejm/10/3/0395

Holland, T. and Powell, R., 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16, p.309-343. DOI:10.1111/j.1525-1314.1998.00140.x

Jaya, A., Nishikawa, O., and Hayasaka, Y., 2017. LA-ICP-MS zircon U-Pb and muscovite K-Ar ages of basement rocks from the south arm of Sulawesi, Indonesia. Lithos, 292, p.96-110. DOI:10.1016/j.lithos.2017.08.023

Kadarusman, A., Massonne, H.J., Roermund, V.H., Permana, H., and Munasri, 2007. P-T evolution of eclogites and blueschists from the Luk Ulo Complex of Central Java, Indonesia. International Geology Review, 49, p.329-356. DOI:10.2747/0020-6814.49.4.329

Ketner, K.B., Kastowo, S., Modjo, C.W., Naeser, H.D., Obradovich, K., Robinson, T., Suptandar, and Wikarno, 1976. Pre-Eocene rocks of Java, Indonesia. Journal of Research of the US Geological Survey, 4, p.605-614.

Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., and Youzhi, G., 1997. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian

Mineralogist, 35, p.219-246. DOI:10.1127/ejm/9/3/0623

Massone, H.J. and Schreyer, W., 1987. Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contributions to Mineralogy and Petrology, 96, p.212-214. DOI:10.1007/bf00375235

Miyazaki, K., Sopaheluwakan, J., Zulkarnain, I., and Wakita, K., 1998. Jadeite-quartz- glaucophane rock from Karangsambung, Central java, Indonesia and its tectonic implications. The Island Arc, 7, p.223-230. DOI:10.1046/j.1440-1738.1998.00164.x

Oh, C.W. and Liou, J.G., 1998. A petrogenetic grid for eclogite and related facies under high-pressure metamorphism. The Island Arc, 7, p.36-51. DOI:10.1046/j.1440-1738.1998.00180.x

Parkinson, C.D., Miyazaki, K., Wakita, K., Barber, A.J., and Carswell, A., 1998. An overview and tectonic synthesis of the pre-Tertiary very-high-pressure metamorphic and associated rocks of Java, Sulawesi and Kalimantan, Indonesia. The Island Arc, 7, p.184-200. DOI:10.1046/j.1440-1738.1998.00184.x

Peacock, S.M., 1987. Cration and preservation of subduction-related inverted metamorphic gradients. Journal of Geophysical Research, 92, p.736-781. DOI:10.1029/jb092ib12p12763

Plunder, A., Thieulot, C., and Hinsbergen, D.J. Van, 2018. The effect of obliquity on temperature in subduction zones: insights from 3-D numerical modeling. Solid Earth, 9, p.759. DOI:10.5194/se-9-759-2018

Presnall, D.C., Dixon, J.R., O’Donnell, T.H., and Dixon, S.A., 1979. Generation of mid-oceanic ridge tholeiites. Journal of Petrology, 87,

p.170-178. DOI:10.1093/petrology/20.1.3

Rieder, M., Cavazzini, G., D’yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Müller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J-L., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R., 1998. Nomenclature of the mica. The Canadian Mineralogist, 36, p.41-48. DOI:10.1180/minmag.1999.063.2.13

Setiawan, N.I., Osanai, Y., Nakano, N., Adachi, T., Yonemura, K., Yoshimoto, A., Setijadji, L.D., Mamma, K., and Wahyudiono, J., 2013. Geochemical characteristics of metamorphic rocks from South Sulawesi, Central Java and South-West Kalimantan metamorphic terrances. Bulletin of the Graduate School of Social and Cultural Studies, Kyushu University, 19, p.39-55.

Setiawan, N.I., Osanai, Y., Nakano, N., and Adachi, T., 2014. Metamorphic evolution of garnet-biotite-muscovite schist from Barru Complex in South Sulawesi, Indonesia. Journal of Applied Geology, 6, p.68-78. DOI:10.22146/jag.7219

Setiawan, N.I., Osanai, Y., Nakano, N., Adachi, T., and Asy`ari, A., 2015. Metamorphic evolution of garnet-bearing epidote-barroisite

schist from the Meratus Complex in South Kalimantan, Indonesia. Indonesian Journal on Geoscience, 2, p.139-156. DOI:10.17014/ijog.2.3.139-156

Setiawan, N.I., Osanai, Y., Nakano, N., Adachi, T., Yonemura, K., and Yoshimoto, A., 2016. Prograde and retrograde evolution of eclogites from the Bantimala Complex in South Sulawesi, Indonesia. Journal of Mineralogical and Petrological Sciences, 111, p.211-225. DOI:10.2465/jmps.150907

Suparka, 1988. Study on the Petrology and Geochemistry of the North Karangsambung Ophiolite, Central Java, Bandung Institute of

Technology (unpublished).

Wakabayashi, J., 1990. Counterclockwise P-T-t paths from amphibolites, Franciscan Complex, California: relics from the early stages of subduction zone metamorphism. Journal of Geology, 98, p.657-680. DOI:10.1086/629432

Wakita, K., Munasri, and Bambang, W., 1994. Cretaceous radiolarians from the Luk Ulo Complex in the Karangsambung area, Central Java, Indonesia. Journal of SE Asian Earth Sciences, 9, p.29-43. DOI:10.1016/0743-9547(94)90063-9

Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95, p.185-187.

DOI:10.2138/am.2010.3371

IJOG as the journal holds copyright of the published papers.