Facies Associations of Early Cretaceous Arumit Formation and Early to Late Cretaceous Ungar Formation in Vulmali and Ungar Islands, Tanimbar (Indonesia)
PDF

Keywords

Cretaceous
Tanimbar
Arumit Formation
Ungar Formation

How to Cite

Fakhruddin, R. (2019). Facies Associations of Early Cretaceous Arumit Formation and Early to Late Cretaceous Ungar Formation in Vulmali and Ungar Islands, Tanimbar (Indonesia). Indonesian Journal on Geoscience, 6(2), 185–208. https://doi.org/10.17014/ijog.6.2.185-208

Abstract

DOI:10.17014/ijog.6.2.185-208

Cretaceous sediments are among the important petroleum system elements for hydrocarbon exploration in Tanimbar area. However, little is known about their facies associations and depositional environments. Facies association analyses have been carried out in fourteen surface sections. Early Cretaceous Arumit Formation comprises three facies associations: subtidal, intertidal, and supratidal deposits. A progradational open-coast tidal flat depositional environment suggests the deposition of sediments of the Arumit Formation. The presence of tidal rhythmites, mud drapes, and fluid mud in those sediments are diagnostic features of a tide domination process in deposition of this unit. Early to Late Cretaceous Ungar Formation in the studied area consists of four facies associations: intertidal, marine offshore to lower shoreface, upper shoreface, and foreshore deposits. An open-coast wave dominated depositional environment is proposed for deposition of sediments of the Ungar Formation. Wave dominated environments in the coarsening upward interval is represented by hummocky cross stratification, cross-bedded sand and gravel, planar parallel stratification, and low-angle stratified beds.

https://doi.org/10.17014/ijog.6.2.185-208
PDF

References

Abbink, O.A., Van Konijnenburg-Van Cittert, J.H.A., and Visscher, H., 2004. A sporomorph ecogroup model for the Northwest European Jurassic-Early Cretaceous: concepts and framework. Netherlands Journal of Geosciences, Geologie en Mijnbouw, 83, p.17-38. DOI:10.1017/S0016774600020436.

Allen, J.R.L., 1963. The classification of cross-stratified units, with notes on their origin. Sedimentology, 2, (2), p.93–114. DOI: 10.1111/j.1365-3091.1963.tb01204.x

Anonymous, 2013, What is upwelling? https://oceanservice.noaa.gov/facts/upwelling.html [28 June 2018].

Ashley, G.M., 1990. Classification of large-scale subaqueous bedforms: a new look at an old problem. Journal of Sedimentary Petrology, 60, (1), p.160–172. DOI: 10.2110/jsr.60.160

Babić, L. and Zupanič, J., 1998. Nearshore Deposits in the Middle Eocene Clastic Succession in Northern Dalmatia (Dinarides, Croatia). Geologia Croatica, 51, (2), p.175–193. DOI: 10.4154/GC.1998.14

Barber, P., Carter, P., Fraser, T., Baillie, P., and Myers, K., 2003. Paleozoic and Mesozoic petroleum systems in the Timor and Arafura seas, eastern Indonesia. Proceedings of Indonesian Petroleum Association, 29th Annual Convention & Exhibition, Jakarta.

Boggs, S., 2011. Principles of sedimentology and stratigraphy. Fifth Edition. Pearson Prentice Hall, 585pp.

Boyd, R., Dalrymple, R.W., and Zaitlin, B.A., 2006. Estuarine and incised-valley facies models. In: Posamentier, H.W. and Walker, R.G. (eds.), Facies Models Revisited. SEPM Special Publication, 84, p.171–235. DOI: 10.2110/pec.06.84.0171

Buatois L.A., Carmona N.B., Curran H.A., Netto R.G., Mángano M.G., and Wetzel A., 2016. The Mesozoic Marine Revolution. In: Mángano M., Buatois L. (eds.) The Trace-Fossil Record of Major Evolutionary Events. Topics in Geobiology, vol 40. Springer, Dordrecht, p.19–134. DOI: 10.1007/978-94-017-9597-5_2

Catuneanu, O., 2006. Principles of Sequence Stratigraphy. Elsevier Science, 386pp.

Charlton, T.R., de Smet, M.E.M., Samodra, H., and Kaye, S.J., 1991. The stratigraphic and structural evolution of the Tanimbar islands, eastern Indonesia. Journal of Southeast Asian Earth Sciences, 6, (3/4), p.343–358.

Charlton, T., 2012. Permian-–Jurassic Palaeogeography of the SE Banda Arc Region. Berita Sedimentologi - Indonesian Journal of Sedimentary Geology, 24, (7), p.5–17.

Charlton, T., 2018. The Petroleum Potential of the Tanimbar islands. Https://www.manson.demon.co.uk/tanimbar.html [28 June 2018].

Choi, K.S., Dalrymple, R.W., Chun, S.S., and Kim, S.P., 2004. Sedimentology of modern, inclined heterolithic stratification (IHS) in the macrotidal Han River delta, Korea. Journal of Sedimentary Research, 74, (5), p.677–689. DOI: 10.1306/030804740677

Christiansen, T., Wiberg, P.L., and Milligan, T.G., 2000. Flow and Sediment Transport on a Tidal Salt Marsh Surface. Estuarine, Coastal and Shelf Science, 50, (3), p.315–331. DOI:10.1006/ecss.2000.0548

Clifton, H.E., 2006. A reexamination of facies models for clastic shorelines. In: Posamentier, H.W. and Walker, R.G. (eds.), Facies Models Revisited. SEPM Special Publication, 84, p.293–338. DOI: 10.2110/pec.06.84.0293

Collinson, J.D., Mountney, N., and Thompson, D., 2006. Sedimentary Structures. Third edition, Terra, Harpenden, Hart, 292pp.

Dalrymple, R.W., 2010. Tidal depositional systems. In: James, N.P., Dalrymple, R.W. (eds.), Facies Models 4. Geological Association of Canada, St. John’s, pp.201–231.

Dalrymple, R.W. and Choi, K., 2007. Morphologic and facies trends through the fluvial–marine transition in tide-dominated depositional systems: A schematic framework for environmental and sequence-stratigraphic interpretation. Earth-Science Reviews, 81, p.135–174. DOI:10.1016/ j.earscirev.2006.10.002

Dashtgard, S.E. and Gingras, M.K., 2005. Facies architecture and ichnology of recent salt-marsh deposits: Waterside Marsh, New Brunswick, Canada. Journal of Sedimentary Research, 75, (4), p.596–607. DOI: 10.2110/jsr.2005.049

Davis, R.A., 2012. Tidal signatures and their preservation potential in stratigraphic sequences. In: Davis, R.A and Dalrymple, R.W. (eds.), Principles of tidal sedimentology. Springer, Dordrecht, p.35–55. DOI: 10.1007/978-94-007-0123-6_3

Duke, W.L., Arnott, R.W.C., and Cheel, R.J., 1991. Shelf sandstones and hummocky cross-stratification: New insights on a stormy debate. Geology, 19, (6), p.625–628. DOI: 10.1130/0091-7613(1991)019<0625:SSAHCS>2.3.CO;2

Dumas, S. and Arnott, R.W.C., 2006. Origin of hummocky and swaley cross-stratification – The controlling influence of unidirectional current strength and aggradation rate. Geology, 34 (12), p.1073–1076. DOI: 10.1130/G22930A.1

Faas, R.W., 1991. Rheological boundaries of mud. Where are the limits? Geo-Marine Letters, 11, (3-4), p.143–146. DOI: 10.1007/BF02431000

Fan D., 2012. Open-Coast Tidal Flats. In: Davis, R.A and Dalrymple, R.W. (eds.), Principles of tidal sedimentology. Springer, Dordrecht, p.187–229. DOI: 10.1007/978-94-007-0123-6_9

Fan, D., 2013. Classifications, sedimentary features and facies associations of tidal flats. Journal of Palaeogeography, 2, (1), p.66–80. DOI: 10.3724/SP.J.1261.2013.00018

Fielding, C.R., 1987. Coal depositional models for deltaic and alluvial plain sequences. Geology, 15, (7), p.661–664. DOI: 10.1130/0091-7613(1987)15<661:CDMFDA>2.0.CO;2

Gedl, P. and Ziaja, J., 2012. Palynofacies from Bathonian (Middle Jurassic) ore-bearing clays at Gnaszyn, Kraków-Silesia Homocline, Poland, with special emphasis on sporomorph eco-groups. Acta Geologica Polonica, 62, (3), p.325–349. DOI: 10.2478/v10263-012-0018-7

Gingras, M.K. and MacEachern, J.A., 2012. Tidal ichnology of shallow-water clastic settings. In: Davis, R.A and Dalrymple, R.W. (eds.). Principles of tidal sedimentology. Springer, Dordrecht, p.57–77. DOI: 10.1007/978-94-007-0123-6_4

Harms, J.C., Southard, J.B., Spearing, D.R., and Walker, R.G., 1975. Depositional Environments as Interpreted From Primary Sedimentary Structures and Stratification Sequences. SEPM Short Course 2, 161pp. DOI: 10.2110/scn.75.02

Helby, R., Morgan, R., and Partridge, A.D., 1987. A palynological zonation of the Australian Mesozoic. In: Jell, P.A. (eds.), Studies in Australian Mesozoic Palynology. Memoir of the Association Australasian Palaeontologists, 4, p.1–94.

Ichaso, A.A. and Dalrymple, R.W., 2009. Tide- and wave-generated fluid mud deposits in the Tilje Formation (Jurassic), offshore Norway. Geology, 37, (6), p.539–542. DOI: 10.1130/G25481A.1

Jasin, B. and Haile, N., 1996. Uppermost Jurassic–Lower Cretaceous radiolarian chert from the Tanimbar islands (Banda Arc), Indonesia. Journal of SE Asian Earth Sciences, 14, (1/2), p.91–100.

Johnson, H.D. and Baldwin, C.T., 1996, Shallow clastic seas. In: Reading, H.G. (eds.), Sedimentary environments: processes, facies and stratigraphy. Third edition. Blackwell Science Oxford, p.232–280.

Kaye, S. J., 1989. The structure of Eastern Indonesia: an approach via gravity and other geophysical methods. Doctoral thesis, Department of Geological Sciences, University of London. 240pp.

Kirby, R. and Parker, W.R., 1983, Distribution and behavior of fine sediment in the Severn Estuary and inner Bristol Channel, U.K.. Canadian Journal of Fisheries and Aquatic Sciences, 40, (S1), p.83–95. DOI: 10.1139/f83-271

Lasemi, Y., Jahani, D., Amin-Rasouli, H., and Lasemi, Z., 2012. Ancient Carbonate Tidalites. In: Davis, R.A and Dalrymple, R.W. (eds.). Principles of tidal sedimentology. Springer, Dordrecht, p.567–607 10.1007/978-94-007-0123-6_21

Li, S., Li, S., Shan, X., Gong, C., and Yu, X., 2017. Classification, formation, and transport mechanisms of mud clasts. International Geology Review, 59, (12), p.1–12. DOI:10.1080/00206814.2017.1287014

Longhitano, S.G., Mellere, D., Steel, R.J., and Ainsworth, R.B., 2012. Tidal depositional systems in the rock record: A review and new insights. In: Longhitano, S.G., Mellere, D., and Ainsworth, R.B. (eds.), Modern and ancient depositional systems: perspectives, models and signatures. Sedimentary Geology, Special Issue, 279, p.2–22. DOI:10.1016/j.sedgeo.2012.03.024

McCubbin, D.G., 1982. Barrier-island and strand-plain facies. In: Scholle, P.A. and Spearing D.R. (eds.), Sandstone Depositional Environments. AAPG Memoirs, 31, p.247–280. DOI: 10.1306/M31424C10

Miall, A.D., 1977. A review of the braided-river depositional environment. Earth-Science Reviews, 13, (1), p.1–62. DOI: 10.1016/0012-8252(77)90055-1

Midtgaard, H.H., 1996. Inner-shelf to lower-shoreface hummocky sandstone bodies with evidence for geostrophic influenced combined flow, Lower Cretaceous, West Greenland. Journal of Sedimentary Research, 66, (2), p.343–353. DOI: 10.1306/D4268342-2B26-11D7-8648000102C1865D

Mossop, G.D. and Flach, P.D., 1983. Deep channel sedimentation in the Lower Cretaceous McMurray Formation, Athabasca Oil Sands, Alberta. Sedimentology, 30, (4), p.493–509. DOI:10.1111/j.1365-3091.1983.tb00688.x

Pemberton, S.G., Spila, M., Pulham, A.J., Saunders, T., MacEachern, J.A., Robbins, D., and Sinclair, I.K., 2001. Ichnology and sedimentology of shallow to marginal marine systems: Ben Nevis and Avalon reservoirs, Jeanne d’Arc Basin. Geological Association of Canada, Short Course Notes, Volume 15, 343pp.

Plummer, P.S. and Gostin, V.A., 1981. Shrinkage cracks: desiccation or synaeresis? Journal of Sedimentary Research, 51, (4), p.1147–1156. DOI:10.1306/212F7E4B-2B24-11D7-8648000102C1865D

Promet, 1984. Koba-1 well completion report (unpublished).

Reading, H.G. and Collinson, J.D., 1996. Clastic Coasts. In: Reading, H.G. (eds.), Sedimentary Environments: Process, Facies and Stratigraphy. Blackwells, Cornwall, p.154–231.

Reineck, H.E. and Singh, I.B., 1980. Depositional Sedimentary Environments. Second Edition, Springer-Verlag Berlin Heidelberg, 551pp. DOI: 10.1007/978-3-642-81498-3

Sukardi and Sutrisno, 1989. Geological Map of the Tanimbar Islands Quadrangle, Maluku. 1:250.000. Geological Research and Development Centre, Bandung.

Suter, J.R., 2006. Facies models revisited: clastic shelves. In: Posamentier, H.W. and Walker, R.G. (eds.), Facies Models Revisited. SEPM Special Publication, 84, p.339–397. DOI: 10.2110/pec.06.84.0339

Tucker, M.E. and Wright, V.P., 1990. Carbonate Sedimentology. Blackwell Scientific Ltd, Oxford, 482pp. DOI: 10.1002/9781444314175

Union Texas, 1995. Barakan-1 well completion report (unpublished).

Vakarelov, K.B., Ainsworth, R.B., and MacEachernc, J.A., 2012. Recognition of wave-dominated, tide-influenced shoreline systems in the rock record: Variations from a microtidal shoreline model. In: Longhitano, S.G., Mellere, D., and Ainsworth, R.B. (eds.), Modern and ancient depositional systems: perspectives, models and signatures. Sedimentary Geology, Special Issue, 279, p.23–41. DOI: 10.1016/j.sedgeo.2011.03.004

Vieira, L.V. and Scherer, C.M.S., 2017. Facies architecture and high resolution sequence stratigraphy of an aeolian, fluvial and shallow marine system in the Pennsylvanian Piauí Formation, Parnaíba Basin, Brazil. Journal of South American Earth Sciences, 76, p.238–256. DOI: 10.1016/j.jsames.2017.03.009

Walker, R.G. and Plint, A.G., 1992. Wave- and storm-dominated shallow marine systems. In: Walker, R.G. and James, N.P. (eds.), Facies Models: Response to Sea-Level Change. Geological Association of Canada, Newfoundland, p.219–238.

Walker, R.G., 2006. Facies models revisited: Introduction. In: Posamentier, H.W. and Walker, R.G. (eds.), Facies Models Revisited. SEPM Special Publication, 84, p.293–338. DOI: 10.2110/pec.06.84.0001

Wever, P.D. and Baudin, F., 1996. Palaeogeography of radiolarites and organic-rich deposits in Mesozoic Tethys. Geologische Rundschau, 85, (2), p.310–326. DOI:10.1007/BF02422237

White, W.A., 1961. Colloid phenomena in sedimentation of argillaceous rocks. Journal of Sedimentary Petrology, 31, (4), p.560–570. DOI:10.1306/74D70BE6-2B21-11D7-8648000102C1865D

Zimmermann, S. and Hall, R., 2014. Provenance of Mesozoic Sandstones in The Banda Arc, Indonesia. Proceedings of Indonesian Petroleum Association, 38th Annual Convention & Exhibition, Jakarta.

IJOG as the journal holds copyright of the published papers.