Geochemistry of Basaltic Merbabu Volcanic Rocks, Central Java, Indonesia
PDF

Keywords

Merbabu
basaltic
geochemical
volcanic
magma
source

How to Cite

Mulyaningsih, S., & Shaban, G. (2020). Geochemistry of Basaltic Merbabu Volcanic Rocks, Central Java, Indonesia. Indonesian Journal on Geoscience, 7(2), 161–178. https://doi.org/10.17014/ijog.7.2.161-178

Abstract

DOI: 10.17014/ijog.7.2.161-178

The studied area is located along the hiking track of Kajor - Selo, the south flank of Merbabu Volcano, Central Java, Indonesia. Olivine basalt and augite-rich basalt compose the volcanic rocks. A geochemical study recognizes these basalts which tend to originate from the product of tholeiitic magma, in terms of transitional enriched mantle source. It is interpreted to have been formed as primary magma that mixed later with higher degrees of partial melting with a mantle wedge. Both fl uid and melt were derived from the mixing of lower active continental margin and subducting oceanic slab. This study also shows general trends of increasing incompatible elements, i.e. Rb, Ba, Pb2+, and Sr as LIL trace elements and Th, U, Nb, Ce, Zr, Hf, Nb, and Ta as HFS element comparing to basaltic andesites exposed at Thekelan, they show decreasing compatible of MgO, Fe2O3*, Al2O3, CaO, TiO2, Ni, Sr, and Ba in line with increasing SiO2. It was fractional crystallization process, shown by the slightly wide variation of Rb/Zr and La/Sm that indicates random crustal contamination.

https://doi.org/10.17014/ijog.7.2.161-178
PDF

References

Anonim (2013), Geological Summary on Merbabu Volcano, Global volcanism Program, Smithsonian Institution

Anshori, C. (2007), Petrogenesa Basalt Sungai Medana Karangsambung, Berdasarkan Analisis Geokimia. Jurnal Riset Geologi & Pertambangan Jilid 17 No.1, p: 37-50. DOI:10.14203/risetgeotam2007.v17.143

Ballaran, T,B., Carpenter, M,, Domeneghetti, M,, Tazzoli, V,, (2015), Structural mechanisms of solid solution and cation ordering in augite-jadeite pyroxenes: I, A macroscopic perspective, American Mineralogist, 83(5-6), pp, 419-433, Retrieved 27 Sep, 2017, from DOI:10,2138/am-1998-5-601

Bemmelen, R.V., 1949. The geology of Indonesia, vol. IA, General Geology. Martinus Nijhoff, The Hague. Netherlands, 732.

Dempsey, S., R. (2013), Geochemistry of volcanic rocks from the Sunda Arc, Durham theses, Durham University. Available at Durham E-Theses Online: https://etheses.dur.ac.uk/6948.

Elliott, T., T. Plank, A. Zindler, W. M. White, and B. Bourdon, (1997), Element transport from slab to volcanic front at the Mariana arc, J. Geophys. Res., 102, 14,991–15,019. DOI:10.1029/97jb00788

Gertisser, R. and Keller, J., 2003. Trace element and Sr, Nd, Pb and O isotope variations in medium-K and high-K volcanic rocks from Merapi Volcano, Central Java, Indonesia: evidence for the involvement of subducted sediments in Sunda Arc magma genesis. Journal of Petrology, 44(3), pp.457-489. DOI:10.1093/

petrology/44.3.457

Gomez, C, (2012), Multi-scale topographic analysis of Merbabu and Merapi volcanoes using wavelet decomposition, Environmental Earth Sciences, 67(5), 1423-1430. DOI:10.1007/s12665-012-1587-1

Handley, H.K., Macpherson, C.G. and Davidson, J.P., 2010. Geochemical and Sr–O isotopic constraints on magmatic differentiation at Gede volcanic complex, west java, Indonesia. Contributions to Mineralogy and Petrology, 159 (6), p.885-908.

Maitre, R.W. (ed.), 2002. Igneous Rocks. A Classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, 2nd ed. xvi + 236 pp. Cambridge, New York, Melbourne. DOI:10.1017/s0016756803388028

Maitre, L., 1989. A classification of igneous rocks and glossary of terms. ecommendations of the international union of geological sciences subcommission on the systematics of igneous rocks, 193.

Le Bas, M.J., Rex, D.C. and Stillman, C.J., 1986. The early magmatic chronology of Fuerteventura, Canary Islands. Geological Magazine, 123(3), pp.287-298.

McCulloch, M.T. and Gamble, J.A., 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102(3-4), pp.358-374.

McDonough, W.F. and Sun, S.S., 1995. The composition of the Earth. Chemical geology, 120(3-4), pp.223-253.

MacLean, W.H., and Barrett, T.J., 1993. Lithogeochemical technique using immobile elements. Journal of Geochemical Exploration, 48 (2), p.109-133.

Mulyaningsih, S., 2006. Geologi lingkungan di daerah lereng selatan Gunung Api Merapi, pada waktu sejarah (Historical time). Disertation in Departemen Teknik Geologi, Sekolah Tinggi Pascasarjana Institut Teknologi Bandung. DOI:10.5614/bull.geol.2017.1.1.1

Mulyaningsih, S., Hidayat, S., Rumanto, B.A., and Saban, G., 2016. Identifikasi Karakteristik Erupsi Gunung Api Merbabu Berdasarkan Stratigrafi dan Mineralogi Batuan Gunung Api. Prosiding Snast, p.85-97.

Pearce, J. A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100, p.14-48.

Pearce, J.A. and Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas, Annual Review of Earth & Planetary Sciences, 23, p.251-285. DOI:10.1146/annurev.ea.23.050195.001343

Shaban, G., Fadlin, and Priadi, B., 2016. Geochemical signatures of potassic to sodic Adang volcanics, western Sulawesi: implications for their tectonic setting and origin. Indonesian Journal on Geoscience, 3 (3), p.195-214.

Shand, S.J., 1927. On the relations between silica, alumina, and the bases in eruptive rocks, considered as a means of classification. Geological Magazine, 64(10), pp.446-449.

Smith, D,, & Lindsley, D, H, (1971), Stable and metastable augite crystallization trends in a single basalt flow, American Mineralogist, 56(1-2), 225,

Sun, S, S, and McDonough, W, F, (1989), Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in Magmatism in The Ocean Basins, pp, 313–345. DOI:10.1144/gsl.sp.1989.042.01.19

Turner, S., Arnaud, N., LIU, J., Rogers, N., Hawkesworth, C., Harris, N., Kelley, S., Van Calsteren, P. and Deng, W., 1996. Post-collision, shoshonitic volcanism on the Tibetan Plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology, 37 (1), p.45-71.

Turner, S. and Hawkesworth, C., 1997. Constraints on flux rates and mantle dynamics beneath island arcs from Tonga–Kermadec lava geochemistry. Nature, 389 (6651), p.568. DOI:10.1038/39257

Wang, Y.N., Zhang, C.J., and Xiu, S.Z., 2001. Th/Hf-Ta/Hf identification of tectonic setting of basalts. Acta Petrol Sin (in Chinese), 17(3), p.413-421.

Winchester, J,A,, and Floyd, P,A, (1977), Geochemical discrimination of different magma series and their differentiation products using immobile elements, Chemical Geology, vol, 20, no, C, pp, 325–343. DOI:10.1016/0009-2541(77)90057-2

Woodhead, J., Eggins, S. and Gamble, J., 1993. High field strength and transition element systematics in island arc and back-arc basin basalts: evidence for multi-phase melt extraction and a depleted mantle wedge. Earth and Planetary Science Letters, 114(4), pp.491-504. DOI:10.1016/0012-821x(93)90078-n

IJOG as the journal holds copyright of the published papers.