Estimated Emplacement Temperatures for a Pyroclastic Deposits from the Sundoro Volcano, Indonesia, using Charcoal Reflectance Analyses
PDF

Keywords

Liyangan archeological site
charcoal
Sundoro Volcano
pyroclastic flow deposition temperature

How to Cite

Harijoko, A., Ayu Safira Mariska, N., & Anggara, F. (2018). Estimated Emplacement Temperatures for a Pyroclastic Deposits from the Sundoro Volcano, Indonesia, using Charcoal Reflectance Analyses. Indonesian Journal on Geoscience, 5(1), 1–11. https://doi.org/10.17014/ijog.5.1.1-11

Abstract

DOI: 10.17014/ijog.5.1.1-11This study applies the charcoalification measurement method to infer the emplacement temperature of pyroclastic flow deposits erupted from the Sundoro Volcano, Indonesia. This pyroclastic flow partially covered the Liyangan archeological site, a site where Hindu temples were constructed approximately 1,000 years ago. Five samples of charcoal collected from this area were analyzed for reflectance and elemental composition. Charcoalification temperatures were determined based on mean random optical reflectance values (Ro) plotted on published Ro-Temperature curves. Charcoalification temperatures were also estimated using a published formula based on the charcoal’s hydrogen to carbon (H/C) ratio. These two methods for determining pyroclastic flow deposition temperatures indicated that the pyroclastic deposits that entombed the Liyangan archeological site ranged from 295° to 487°C when they were deposited. This study used very simple, rapid, precise, and low-cost methods of charcoalification temperature measurement to infer the emplacement temperature of a pyroclastic deposit. This estimation procedure could be applied widely to predict emplacement temperatures in volcanic area in Indonesia to enhance volcanic hazard mitigation.
https://doi.org/10.17014/ijog.5.1.1-11
PDF

References

Aldrian E., 2000. Pola Hujan Rata-Rata Bulanan Wilayah Indonesia; Tinjauan Hasil Kontur Data Penakar Dengan Resolusi Echam T-42. Jurnal Sains dan Teknologi Modifikasi Cuaca, 1 (2), p.113-123.

Ascough, P.L., Bird, M.I., Scott, A.C., Collinson, M.E., Cohen-Ofri, I., Snape, C.E., and Le Manquais, K., 2010. Charcoal Reflectance Measurements: Implications for Structural Characterization and Assessment of Diagenetic Alteration. Journal of Archeological Science, 37(7), p.1590-1599. DOI: 10.1016/j.jas.2010.01.020.

Australian Standard (AS) 2856, 1986. Coal Maceral Analysis.

Carrichi, C., Vona, A., Corrado, S., Giordano, G., and Romano, C., 2014. 79AD Vesuvius PDC Deposits’ Temperature Inferred from Optical Analysis on Woods Charred In-Situ in The Villa dei Papiri at Herculaneum (Italy). Journal of Volcanology and Geothermal Research, 289, p.14-25. DOI: 10.1016/j.jvolgeores.2014.10.016.

Giordano, G., Porreca, M., Musacchio, P., and Mattei, M., 2008. The Holocene Secche d Lazaro Phreatomagmatic Succession (Stromboli, Italy). Evidence of Pyroclastic Density Current Origin Deduced by Facies Analysis and AMS Flow Directions. Bulletin of Volcanology, 70, p.1221. DOI: 10.1007/s00445-008-0198-x.

Gurioli, L., Pareschi, M.T., Zanella, E., Lanza, R., Deluca, E., and Bisson, M., 2005. Interaction of PyroclasticDensity Currents with Human Settlements: Evidence from Ancient Pompeii. Geology, 33 (6), p.441-444, DOI: 10.1130/G21294.1.

Inoue, J. and Yoshikawa, S., 2003. Identification of Charcoal in Quaternary Sediments and Estimation of the Charred Temperature by Reflectance Measurements and H/C RatioAnalysis and Observation through Reflectance and Scanning Electron Microscopy. Journal of Geoscience, 46 (8), p.127-134.

Jones, T.P., Scott, A.C., and Cope, M., 1991. Reflectance measurements and the temperature of formation of modern charcoals and implications for studies of fusain. Bulletin de la Société Géologique de France, 162, p.193-200.

Kusumadinata, K., Hadian, R., Hamidi, S., and Reksowirogo, L.D., 1979. Data Dasar Gunung Api Indonesia, Bandung, Direktorat Vulkanologi, 820pp.

Porreca, M., Mattel, M., MacNiocaill, C., Giordano, G., McClelland, E., and Funiciello, R., 2007. Paleomagnetic Evidence for Low-Temperature Emplacement of the Phreatomagmatic Peperino Albano Ignimbrite (Colli Albani Volcano, Central Italy). Bulletin of Volcanology, 70, p.877-893. DOI:10.1007/s00445-007-0176-8.

Prambada, O., Arakawa, Y., Ikehata, K., Furukawa, R., Takada, A., Wibowo, H.E., Mitsuhiro, N., and Kartadinata, M.N., 2016. Eruptive History of Sundoro Volcano, Central Java, Indonesia since 34 ka. Bulletin of Volcanology, 78, p.81. DOI:10.1007/s00445-016-1079-3.

Sawada, Y., Sampei, Y., Hyodo, M., Yogami, T., and Fukue, M., 2000. Estimation of Emplacement Temperatures of Pyroclastic Flows Using H/C Ratios of Carbonized Wood. Journal of Volcanology and Geothermal Research, 104, p.1-2. DOI:10.1016/S0377-0273(00)00196-7.

Scott, A.C., 2000. The Pre-Quaternary history of fire. Journal of Palaeogeography, Palaeoclimatology, Palaeoecology, 164 (1-4), p.281-329. DOI:10.1016/S0031-0182(00)00192-9.

Scott, A.C. and Damblon, F., 2010. Charcoal: Taphonomy and Significance in Geology, Botany, and Archaeology. Journal of Palaeogeography, Palaeoclimatology, and Palaeoecology, 291 (1-2), p.1-10. DOI: 10.1016/j.palaeo.2010.03.044.

Scott, A.C. and Glasspool, I.J., 2005. Charcoal Reflectance as a Proxy for the Emplacement Temperature of Pyroclastic Flow Deposits. Journal of Geology, 33, p.589-592. DOI:10.1130/G21474.1.

Scott, A.C. and Glasspool, I.J., 2006. Observations and Experiments on The Origin and Formation of Inertinite Group Macerals. International Journal of Coal Geology, 70 (1-3),p.53-66. DOI:10.1016/j.coal.2006.02.009.

Setijadji, L.D., 2010. Segmented Volcanic Arc and its Association with Geothermal Fields in Java Island, Indonesia. Proceedings of World Geothermal Congress 2010, Bali, Indonesia.

Sulpizio, R., Dellino, P., Doronzo, D.M., and Sarocci D., 2014. Pyroclastic Density Currents: State of the Art and Perspectives. Journal of Volcanology and Geothermal Research, 283, p.36-65. DOI: 10.1016/j.jvolgeores.2014.06.014.

Tim Penelitian Balai Arkeologi Yogyakarta, 2012. Laporan Penelitian Arkeologi Situs Liyangan, Temanggung, Jawa Tengah, Yogyakarta. Balai Arkeologi Yogyakarta (unpublished).

IJOG as the journal holds copyright of the published papers.