Fluid-Rock Interaction During Hydrothermal Alteration at Parangtritis Geothermal Area, Yogyakarta, Indonesia
PDF

Keywords

rocks
hydrothermal fluid
alteration mineral
mobilization element

How to Cite

Yudiantoro, D. F., Haty, I. P., Sayudi, D. S., Aji, A. B., C., S. U., & Adrian, M. N. (2019). Fluid-Rock Interaction During Hydrothermal Alteration at Parangtritis Geothermal Area, Yogyakarta, Indonesia. Indonesian Journal on Geoscience, 6(1), 29–40. https://doi.org/10.17014/ijog.6.1.29-40

Abstract

DOI: 10.17014/ijog.6.1.29-40

Parangtritis Volcano is part of the Tertiary magmatic belt in Java, which was tectonically formed by collisions between the Eurasian Continental Plate and Indo-Australian Oceanic Plate. The collisions have taken place since Late Cretaceous and still continue until today. In that period, the magmatic belt in Java Island was formed and produced mineralization and geothermal. The characterization of geothermal in Tertiary volcanoes differs from the geothermal system that is on Quaternary volcano alignment in the middle of Java, such as: Awibengkok, Wayang Windu, Darajat, and Kamojang which have a high temperature. The purpose of this research is to study the mobilization elements due to interaction of hydrothermal fluids with wall rocks in low enthalpy geothermal regions of the Tertiary magmatic arc in Parangtritis. Identification of minerals and chemical element changes is approached by methods of petrographic and scanning electron microscope (SEM) analyses. As for knowing the composition and the origin of hydrothermal fluids, it used analyses of cations, anions, and isotope δ18O and δD of hot water manifestation. The occurrence of geothermal manifestations in Parangtritis, such as hot water and rock alteration, reflects the interaction of hydrothermal fluids with wall rocks which generates an argillic zone with mineral alteration such as quartz, calcite, montmorillonite, and hematite. The presence of alteration mineral montmorillonite replacing pyroxene provides an evidence that there have been interactions between the fluids and rocks. This interaction is as a process of element mobilization. Decrease in elements Si, Ca, Mg, and Fe is accompanied by an increase of Al during the replacement of pyroxene into montmorillonite. The mobility of this element occurs due to acid fluids. However, the hydrothermal fluid composition of the current hot water manifestation is neutral chloride water type composition, and the origin of the fluids is meteoric water (δ18O: -4.20 ‰ and δD: 23.43 ‰).

https://doi.org/10.17014/ijog.6.1.29-40
PDF

References

Anorsson, S., 1975. Application of The Silica Geothermometer in Low-Temperature Hydrothermal Area in Iceland. American Journal of Science, 275, p.763-784.

Bothe, A. Ch. D., 1929. Djiwo Hills and Southern Range, Fourth Pacific Science Congress, Excursion Guide, 1929, 14pp.

Browne, P.R.L., 1978. Hydrothermal Alteration in Active Geothermal Fields. Annual Review Earth and Planetary Sciences, 6, p.229-250.

Browne, P.R.L. and Brown, K.L., 1996. Geothermal Technology: “Teaching the Teachers” Course Stage III, ITB Bandung Indonesia- University Auckland.

Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133, p.1702-1703.

Craig, H., 1966. Isotopic Composition and Origin of the Red Sea and Salton Sea Geothermal Brines. Science, 154, p.1544-1548.

Deer, W.A.F.R.S., Howie, R.A., and Zussman, J., 1985. An Introduction to the Rock Forming Minerals. Longman Group Limited, 528pp.

Deer, W.A.F.R.S., Howie, R.A., and Zussman, J., 1992. An Introduction to the Rock Forming Minerals, 2nd edition, Pearson Education Limited, 696p.

Delvianus Tae, Y., Florency, F., Putri, R.A., Padjeko, M.A., Senduk, SE., Kiswiranti, D., 2018. Identifikasi Potensi Geothermal Nonvulkanik Dengan Perpaduan Data Remote Sensing (GIS) dan Pemetaan Geologi di Parang Wedang, Kecamatan Kretek, Kabupaten Bantul, Daerah Istimewa Yogyakarta. Prosiding, Seminar Nasional Kebumian ke- 11 Perspektif Ilmu Kebumian Dalam Kajian Bencana Geologi di Indonesia, 5 -6 September 2018, Grha Sabha Pramana, p.1065-1074. DOI: 10.14710/pwk.v8i2.11570

Evans, M.J., Derry, LA., and France-Lanord, C., 2005. Hydrothermal flux of metamorphic carbon dioxide from the Central Nepal Himalaya. Eos Transactions of the American Geophysical Union, 86, T23C-0581.

Faure, G., 1977. Principles of Isotope Geology. John Wiley and Sons, New York, 464pp.

Field, C.W. and Fifarek, R.H., 1985. Light Stable-Isotope Systematics in the Epithermal Environment, In: Berger, B.R. & Bethke, P.M. (eds), Geology and Geochemistry of Epithermal

Systems, Reviews in Economic Geology, 2, Society of Economic Geologists, p.99-128.

Fournier, R.O., 1981. Application of water geochemistry to geothermal exploration and reservoir engineering. In: Rybach, L. and Muffler, L.J.P. (eds), Geothermal systems: Principles and case histories, Wiley & Sons, Chichester, New York, Brisbane, Toronto, p.109-143.

Giggenbach, W.F., 1986. Graprical Techniques for The Evaluation of Water/rock Equilibration Conditions by Use of Na, K, Mg and Cacontents of Discharge Waters, Proceeding 8th NZ Geothermal. Workshop, p.37-42.

Giggenbach, W.F., 1988. Geothermal Solute Equilibria Deviation of Na-K-Mg-Ca Geoindicator. Geochemica Acta, 52.

Giggenbach, W.F., 1991. Chemical techniques in geothermal exploration. In: D’Amore, F. (coordinator), Applications of geochemistry in geothermal reservoir development. UNITAR/UNDP publication, Rome, p.119-142.

Hartono, G., 2000. Studi Gunungapi Tersier: Sebara Pusat Erupsi dan Petrologi di Pegunungan Selatan Yogyakarta, Thesis Magister, ITB Bandung, 167pp.

Hedenquist, J.W. and Richards, J., 1998. The Influence of Geochemical Techniques on The Development of Genetic Models for Porphyry Copper Deposits. In: Richards and Larson (eds), Techniques in Hydrothermal Ore Deposits Geology, Economic Geology, 10, p.235-256.

Hoefs, J., 1980. Stable Isotope Geochemistry, Second Edition. Springer-Verlag, Berlin-Heidelberg, New York, 208pp.

Idral, A., Suhanto, E., Sumardi, E., Kusnadi, D., and Situmorang, T., 2003. Penyelidikan Terpadu Geologi, Geokimia dan Geofisika

Daerah Panas Bumi Parangtritis Daerah Istimewa Yogyakarta. Kolokium Hasil Kegiatan Inventarisasi Sumber Daya Mineral-DIM,

p.1-351.

Inoue A., 1995. Formation of Clay Minerals in Hydrothermal Environments. In: Bruce Velde (eds), Origin and Mineralogy of Clay, Springer-Verlag, 334pp.

Marzuki dan Otong, 1991. Bouger Anomaly Map of The Yogyakarta Quadrangle Java. Geological Research and Development Centre, Directorate General Geology and Mineral

Resources, Department of Mines Energy.

Nahrowi, T.Y., Suratman, Kamida, S., and Hidayat, S., 1979. Geologi Pemetaan Pegunungan Selatan Jawa Timur, Bagian Explorasi, PPTMGS “LEMIGAS” Cepu, 56pp.

Nicholson, K., 1993. Geothermal Fluids Chemistry and Exploration Techniques. Springer-Verlag, 263pp.

Rahardjo., W., Sukandarrumidi, dan Rosidi, H.M.D., 1977. Peta Geologi Lembar Jogjakarta, Jawa skala 1:100.000, Edisi II. Pusat Penelitian dan Pengembangan Geologi. Bandung.

Reyes, A.G., 1990. Petrology of Philippines Geothermal Systems and the Application of Alteration Mineralogy to Their Assessment. Journal of Volcanology and Geothermal Research, 43, p.279-309.

Reyes, A.G., Giggenbach, W.H., Saleras, J.R.M., Salonga, N.D., and Vergara, M.C., 1993. Petrology and Geochemistry of Alto Peak, a Vapor-cored Hydrothermal System, Leyte Province, Philippines: Geothermics, 22, p.479-519.

Richardson, S.M. and McSween, H.Y.Jr., 1989. Geochemistry Pathways and Processes. Englewood Cliffs, New Jersey, p.208-235.

Samodra, H., Gafoer, S., and Tjokroseputro, S.,1992. The Geological Map of Pacitan Quadrangle, scale 1:100.000. Geological Research and Development Center, Bandung.

Sartono, S., 1964. Stratigraphy and Sedimentation of The Eastern Most Part of Gunung Sewu (East Java). Publikasi Teknik-Seri Geologi Umum No.1, Direktorat Geologi Bandung.

Soeria-Atmaja, R., Pringgoprawiro, H., and Priadi, B., 1990. Tertiary magmatic activity in Java: a study on geochemical and mineralogical evolution. In: Prosiding Persidangan Sains Bumi and Masyarakat. University Kebangsaan Malaysia, 9-10 Julai 1990, Kuala Lumpur, p.164-180.

Soeria-Atmadja, R., Suparka, M.E., and Yuwono, Y.S., 1991. Quaternary Calc-Alkaline Volcanism in Java with Special Reference to Dieng and Papandayan-Galunggung Complex. Proceedings, International Conference Volcanology and Geothermal Technology, IAGI-Bandung.

Steiner, A., 1953. Hydrothermal Rocks Alteration at Wairakei, New Zealand, Economic Geology, 48, 1-13.

Steiner, A., 1968 : Clay Minerals in Hydrothermally Altered Rocks at Wairakei, New Zealand. Clays and Clay Minerals, 16, p.193-213. DOI: 10.1346/ccmn.1968.0160302

Surono, Sudarno, I., and Toha, B., 1992. Peta Geologi Lembar Surakarta-Giritontro, Jawa, scale 1:100.000. P3G, Bandung.

Taylor, H.P., Jr., 1967. Oxygen Isotope Studies of Hydrothermal Mineral Deposits. In: Barnes, H.L. (ed.), Geochemistry of Hydrothermal Ore Deposits, Holt, Rinehart and Winston, Inc., p.109-142.

Yudiantoro D.F., 1997. Kimia Batuan Ubahan Hidrotermal Sumur KMJ-49 dan Sumur KMJ- 57 Lapangan Panasbumi Kamojang Jawa Barat, Thesis Magister Program, Geological Engineering ITB Bandung, 146pp.

Yudiantoro, D.F., Suparka, E., Takashima, I., Ishiyama, D., and Kamah, Y., 2012 : Alteration and Lithogeochemistry of Alteration Rocks at Well KMJ-49 Kamojang Geothermal Field West Java Indonesia, International Journal Economic and Environmental Geology, 3 (2), p.21-32.

IJOG as the journal holds copyright of the published papers.