The Oxygenated Biomarker as an Indicator of Origin and Maturity of Miocene Brown Coal, Sangatta Coal Mines, East Kalimantan
PDF

How to Cite

Zetra, Y., Kusuma, H. S., Riandra, F., Sosrowidjojo, I. B., & Burhan, R. P. (2018). The Oxygenated Biomarker as an Indicator of Origin and Maturity of Miocene Brown Coal, Sangatta Coal Mines, East Kalimantan. Indonesian Journal on Geoscience, 5(2), 107–116. https://doi.org/10.17014/ijog.5.2.107-116

Abstract

DOI: 10.17014/ijog.5.2.107-116

The Middle to Late Miocene brown coal extracted from Inul area, Sangatta coal mines, East Kalimantan, was studied to recognize the distribution of ketone and acid biomarkers. Samples were extracted using soxhlet method and separated by column chromatography and thin layer chromatography. Acetylation of acid fractions by BF3/MeOH produced an ester compound which is an acid derivative. The distributions of fatty acid methyl esters were analyzed with gas chromatography-mass spectrometry (GC-MS). The distributions of ketones included compounds in n-alkan-2-one, amyrin-derived ketone, and friedeline derivatives as well as olean-13(18)-en-3-one with oleanane skeleton. Distributions of fatty acids included compounds in the range from n-methylhexadecanoate (n-C16) to n-methyltriacontanoate (n-C30) with dominating compounds from n-methylhexadecanoate (n-C16) to n-methyldococanoate (n-C22). The most obvious feature is predominance of compounds with even-over-odd-carbon-atom-number in a molecule, which come from vascular plant fatty acids. The distributions of these biomarker compounds are used as an indicator of higher plant and oxic depositional environment, as well as the involvement of bacteria in diagenesis stage which indicates immature coals.

https://doi.org/10.17014/ijog.5.2.107-116
PDF

References

Albaiges, J., Algaba, J., and Grimalt, J., 1984. Extractable and bound neutral lipids in some lacustrine sediments. Organic Geochemistry, 6, p.223-236. doi:10.1016/0146-6380(84)90044-5

Alberdi, M. and Lopez, L., 2000. Biomarker 18α(H)-oleanane: a geochemical tool to assess Venezuelan petroleum systems. Journal of South America Earth Science,13, p.751-759. DOI:10.1016/S0895-9811(00)00055-9

Azevedo, D.A., Zinu, C. J. A., Neto F.R.A., and Simoneit, B.R.T., 2001. Possible origin of acyclic (linear and isoprenoid) and tricyclics terpane methylketones in a Tasmanian tasmanite bitumen. Organic Geochemistry, 32, p.443-448. DOI:10.1016/S0146-6380(00)00164-9

Bakar, N.A., Tay, K.S., Omar, N.Y.M.J., Abas, M.R.B., and Simoneit, B.R.T., 2011. The geochemistry of aliphatic and polar organic tracers in sediments from Lake Bera, Malaysia. Applied Geochemistry, 26, p.1433-1445. DOI:10.1016/j.apgeochem.2011.05.016

Burhan, R.Y.P., Trendel, J.M., Adam, P., Wehrung, P., Albrecht, P., and Nissenbaum, A., 2002. Fossil bacterial ecosystem at methane seeps: Origin of organic matter from Be’eri sulfur deposit, Israel. Geochimica et Cosmochimica Acta, 66, p.4085-4101. DOI:10.1016/S0016-7037(02)00979-1

Christyahya, A. H., 2006, Case Study : Analisa Reservoir Sangatta Terhadap Pengaruh Lumpur Pemboran OBM vs WBM, Prosiding Simposium Nasional & Kongres IX Ikatan Ahli Teknik Perminyakan Indonesia (IATMI), Jakarta, Indonesia, p. TS-33. DOI:10.24176/0360.0101

Courteney, S., Cockroft, P., Lorentz, R., Miller, R., Ott, H.L., Prijosoesilo, P., Suhendan, A.R.,Wight, A.W.R., Wiman, S.K., Phoa, R.S.K., 1991. Indonesia Oil and Gas Fields Atlas. Indonesia Petroleum Association; Jakarta. DOI:10.1007/978-1-4614-3576-1_20

Cranwell, P.A., 1977. Organic Geochemistry of Cam Loch (Sutherland) Sediments. Chemical Geology, 20, 205-221.

Cranwell, P.A., Eglinton, G., and Robinson, N., 1987. Lipids of Aquatic Organisms as Potential Contributors to Lacustrine Sediment-II. Organic Geochemistry,11 (6), p.513-527. DOI:10.1016/0146-6380(87)90007-6

Dong, J.-Z., Vorkink, W.P., and Lee, M.L. 1993. Origin of Long-Chain Alkhylcyclohexanes and Alkylbenzenes in a Coal- Bed Wax. Geochimica et Cosmochimica Acta, 5, p.837–849. DOI:10.1016/0016-7037(93)90172-S

Duan, Y., 2000. Organic geochemistry of Recent Marine Sediments from the Nansha Sea, China. Organic Geochemistry, 31, p.159-167. DOI:10.1016/S0146-6380(99)00135-7

Fabiańska, M.J., 2004. GC-MS Investigation of distribution of fatty acids in selected Polish brown coal. Chemometrics and intelligent laboratory systems, 72, p.241-244. DOI:10.1016/j.chemolab.2004.01.019

Fabiańska, M.J. and Kurkiewicz, S., 2013. Biomarkers, aromatic hydrocarbons and polar compounds in The Neogene lignites and gangue sediments of The Konin and Turoszów Brown Coal Basins (Poland). International Journal of Coal Geology, 107, p.24-44. DOI:10.1016/j.coal.2012.11.008

Fang Yu, Thamm, A.M.K., Reed, D., Villa-Ruano, N., Quesada, A.L., Gloria, E.L., Covello, P., and Luca, V.D., 2013. Functional characterization of amyrin synthase involved in ursolic acid biosynthesis in Catharanthusroseus leaf epidermis. Phytochemistry, 91, p.122–127. DOI:10.1016/j.phytochem.2012.05.002

Garcette-Lepecq, A., Derenne, S., Largeau, C., Bouloubassi, I., and Saliot, A., 2000. Origin and formation path ways of kerogen-like organic matter in recent sediments off the Danube delta (north western Black Sea). Organic Geochemistry, 31, p.1663-1683. DOI:10.1016/S0146-6380(00)00100-5

Hanisch, S., Ariztegui, D., Puttmann, W., 2003. The biomarker record of Lake Albano, central Italy-implications for Holocene aquatic system response to environmental change. Organic Geochemistry. 34,1223–1235.

Haug, P., Schnoes, H. K., Burlingame, A.l., 1971. Studies of the Acidic Components of the Colorado Green River Formation Oil Shale: Mass Spectometric Identification of the Methyl Esters of Extractable Acids. Chem. Geol. 7,213–236.

Ikan, R., Baedecker, M.J., Kaplan, I.R., 1973. C18-Isoprenoid keton in recent marine sediments. Nature 244, 154-155.

Jaraula, C. M. B., Brassell, S. C., Morgan-Kiss, R. M., Doran, P. T., Kenig, F., 2010. Origin and tentative identification of tritopenta unsaturated ketones in sediments from Lake Fryxell, EastAntarctica. Organic Geochemistry. 41, 386–397

Lehtonen, K., Ketola, M., 1990. Occurrence of long-chain acyclic methyl ketones in Sphagnum and Carex peats of various degress of humification. Organic Geochemistry. 15,275–280.

Matsuda, H., Koyama, T., 1977. Early diagenesis of fatty acids in lacustrine sediments-I. Identification and distribution of fatty acids inrecent sediment from a fresh water lake. Geochimica et Cosmochimica Acta 41, 777–783.

Mita, H., Fukunaga, N., and Shimoyama, A., 1998. Characterisation of dicarboxylic acids in the Cretaceous/Tertiary bonudary sediments at Kawaruppu, Hokaido, Japan and comparison with those of carbonaceous chondrites. Geochimica et Cosmochimica Acta, 62, p.3965-3702. DOI:10.1016/S0016-7037(98)00259-2

Morisson, R.I. and Bick, W., 1966. Long chain methyl ketones in soils. Chemistry & Industry, p.596-597. DOI:10.1126/science.151.3710.596

Muggeridge, G.D., 1987. The geology and exploration history of the Pinang coal deposits, East Kalimantan-Indonesia. P.T. Kaltim Prima Coal Internal (unpubl) Report no. 49, 44. DOI:10.1016/0166-5162(83)90011-3

Nas, C., 1994. Spatial variations in the thickness and coal quality of the Sangatta seam, Kutei Basin, Kalimantan, Indonesia. Research Online: University of Wollongong, New South Wales, Australia. Thesis Collection, p. 517. DOI:10.1093/oso/9780198748977.001.0001

Nytoff, H.P., Bojesen-Koefoed, J.A., Christiansen, F.G., and Fowler, M.G., 2002. Oleanane or lupane? Reappraisal of the presence of oleanane in Cretaceous-tertiary oils and sediments. Organic Geochemistry, 33, p.1225-1240. DOI:10.1016/S0146-6380(02)00138-9

Okoh, A.I., 2006. Biodegradation alternative in the clean up of petroleum hydrocarbon pollutants. Biotechnology Molecular Biology ,1, p.38–50. DOI: 10.1016/j.ibiod.2017.02.006

Parrish, C.C., Abrajano, T.A., Budge, S.M., Helleur, R.J., Hudson, E.D., Pulchan, K., and Ramos, C., 2000. The Handbook of Enviromental Chemistry., Springer-Verlag, Berlin.

Rieley, G., Collier, R.J., Jones, D.M., and Eglinton, G., 1991. The Biogeochemistry of Ellesmere Lake, U.K.-I: Source Correlation of Leaf Wax Inputs to the Sedimentary Lipid Record. Organic Geochemistry, 17, p.901-912. DOI:10.1016/0146-6380(91)90031-E

Sikumbang, N., Umar, I., and Sunaryo, R., 1981. Peta Geologi Lembar Sangatta, Kalimantan Timur: Skala 1:250000 (Geological Map of the Sangatta Quardangle, East Kalimantan, scale 1:250000). Pusat Penelitian dan Pengembangan Geologi, Bandung (Geological Research Development Centre, Bandung, Indonesia). DOI:10.5614/bull.geol.2018.2.1.4

Simoneit, B.R.T., 1977. Diterpenoid compounds and other lipids in deep-sea sediments and their geochemical significance. Geochimica et Cosmochimica Acta, 41, p.463-476. DOI:10.1016/0016-7037(77)90285-X

Simoneit, B.R.T., 1978. Organic geochemistry of terrigenous muds and various shales from the Black Sea, DSDP leg 42B. In: Ross D.A. (Ed.), Initial Reports of the Deep Sea Drilling Project, 42 ( 2), p.749-753. US Government Printing Office, Washington, DC DOI:10.2973/dsdp.proc.42-2.136.1978

Summons, R.E. and Powell, T.G., 1987. Identifications of aryl Isoprenoids in Source Rocks and Crude Oils: Biological Markers for the Green Sulphur Bacteria, Geochimica et Cosmochimica Acta, 51, p.557-566. DOI:10.1016/0016-7037(87)90069-X

Tuo, J. and Li, Q. 2005. Occurrence and distribution of long-chain acyclic ketones in immaturecoals. Applied Geochemistry, 20, p.553-568. DOI:10.1016/j.apgeochem.2004.09.012

Volkman, J.K., Eglinton, G., Corner, E.D.S., and Forsberg, T.E.V., 1980. Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi. Phytochemistry, 19, p.2619-2622. DOI:10.1016/S0031-9422(00)83930-8

IJOG as the journal holds copyright of the published papers.