DMT Method Approach for Liquefaction Hazard Vulnerability Mapping in Bantul Regency, Yogyakarta Province, Indonesia
DOI:
https://doi.org/10.17014/ijog.2.1.53-61Keywords:
earthquake, flat blade dilatometer, horizontal stress index, liquefaction potentialAbstract
On May 27 2006, an earthquake (Mw 6.2) occurring in Bantul, Yogyakarta Special Province, triggered liquefaction phenomenon such as sand boiling and lateral spreading. Knowledge of the liquefied soil layers is required to mitigate the hazard. The purpose of this research is to determine the depth and thickness of liquefiable soil layers using the flat blade dilatometer test (DMT) method. The horizontal stress index values (KD) obtained from the DMT were used to calculate the cyclic resistance ratio (CRR), while the PGA (peak ground acceleration) calculated by the software EZ-FRISK 7.52 were employed to determine the cyclic stress ratio (CSR). The DMT-based liquefaction potential analysis shows that the thickness of liquefiable soil layers ranges from 1.8 to 4.0 m. These results show a good agreement with the previous analysis based on CPT (cone penetration test) data. The analysis also indicated that, for the given earthquake magnitude and PGA, the liquefiable soil layers are characterized by a range of maximum KD value from 2.1 to 3.7.
References
Boore, D. M. and Atkinson, G.M., 2008. Groundmotion prediction equations for the average horizontal component of PGA, PGV, and 5% Damped PSA at spectral periods between 0.01s and 10.0s. Earthquake Spectra, 24(1), p.99-138.
Idriss, I. M. and Boulanger, R. W., 2006. Semi-Empirical Procedures for Evaluating Liquefaction Potential During Earthquakes. Soil Dynamics and Earthquake Engineering, 26, p. 115-130.
Irsyam, M., Sengara, I.W., Aldiamar, F., Widiyantoro, S., Triyoso, W., Natawidjaja, D.H., Kertapati, E., Meilano, I., Suhardjono, Asrurifak, M., and Ridwan, M., 2010. Revisi Hasil Studi Tim Revisi Peta Gempa Indonesia 2010. https://www.preventionweb.net/files/14654_AIFDR.pdf [March 03th2014].
Kuepper, G.J., 2006. No.4. 2006. Emergency & Disaster Management. In: Emergency and Disaster Management Report
Malau, H. A., 2008. Studi Karakteristik Getaran Gempa di Yogyakarta Untuk Mengembangkan Kriteria Desain Seismik di Yogyakarta. Tugas Akhir Mahasiswa Sarjana Teknik Sipil, Institut Teknologi Bandung.
Monaco, P., Marchetti, S., Totani, G., and Calabrese, M., 2005. Sand liquefiability assessment by Flat Dilatometer Test (DMT). Proceedings, XVI ICSMGE, 4, p.2693-2697.
Nurwidyanto, M. I., Indriana, R.D., and Darwis, Z. T., 2007. Pemodelan Zona Sesar Opak di Daerah Pleret Bantul Yogyakarta dengan Metode Gravitasi. Jurnal Laboratorium Geofisika Jurusan Fisika FMIPA, 10 (1), p. 65-70, UNDIP.
Putra, H. G., Hakam, A., and Lastarun, D., 2009. Analisa Potensi Likuifaksi Berdasarkan Data Pengujian Sondir (Studi Kasus Gor Haji Agus Salim dan Lapai, Padang). Jurnal Rekayasa Sipil, 5(1), p. 11-22.
Rahardjo, W., Sukandarrumidi, and Rosidi, H.M.D., 1995. Geological Map of the Yogyakarta Sheet, scale 1 : 100.000. Geological Research and Development Centre, Bandung.
Risk Engineering Inc, 2011. Manual of EZFRISK 7.52 software.
Sarah, D. and Soebowo, E., 2013. Liquefaction Due to the 2006 Yogyakarta Earthquake: Field Occurrence and Geotechnical Analysis. International Symposium on Earth Science and Technology, CINEST. Procedia Earth and Planetary Science, 6, p. 383 - 389.
Seed, H. B. and Idriss, I. M., 1971. Simplified Procedure for Evaluation Soil Liquifaction Potential. Journal of Soil Mechanics and Foundation
Division, ASCE, 97(9), p.249 – 273.
Soebowo, E., Tohari, A., and Sarah, D., 2009. Potensi Likuifaksi Akibat Gempabumi Berdasarkan Data CPT dan N-SPT di Daerah Patalan Bantul Yogkarta. Jurnal Riset Geologi dan Pertambangan, 19(2), p. 85-97.
Tohari, A., Sugianti, K., and Soebowo, E., 2009. Liquefaction Potential at Padang City: A Comparison of Predicted and Observed Liquefactions During The 2009 Padang Earthquake. Jurnal Riset Geologi dan Pertambangan, 21(1), p.7-13.