Seasonal Mean Variability of Coral-based Sea Surface Salinity from Simeulue, Mentawai, Bunaken, and Bali
PDF

Keywords

salinity
coral
δ18O
SST
Simeulue
Mentawai
Bunaken
Bali

How to Cite

Cahyarini, S. Y. (2013). Seasonal Mean Variability of Coral-based Sea Surface Salinity from Simeulue, Mentawai, Bunaken, and Bali. Indonesian Journal on Geoscience, 8(3), 119–125. https://doi.org/10.17014/ijog.8.3.119-125

Abstract

DOI: 10.17014/ijog.v8i3.161

Sea surface salinity is an important parameter in a climate study. Coral δ18O records δ18O seawater and sea surface temperature (SST). While, coral Sr/Ca records SST only commonly used in a paleoclimate study to reconstruct SST. Thus, paired coral δ18O and Sr/Ca can be used to reconstruct δ18O seawater. δ18O seawater and SSS is linearly correlated, thus reconstructed δ18O seawater further is used to reconstruct sea surface salinity (SSS). Instead of using coral Sr/Ca as SST recorder, paired model (grid) or measured SST data is used to reconstruct SSS. In this study, paired coral δ18O and grid SST data are presented to reconstruct SSS from several different locations across Indonesian sea i.e Simeulue, Mentawai, Bunaken, and Bali. Coral-based SSS reconstructions from those locations are then compared to the grid SSS in the seasonal mean scale. The result shows that annual mean variation of salinity for period of 1958-2008 in Mentawai and Simeulue is 33.25 psu and 33.26 psu respectively, while in Bunaken and Bali is 34.03 psu and 33.47 psu respectively. Correlation coefficient between coral salinity and salinity from model data in the seasonal/monthly mean scale is high i.e R = 0.62 - 0.83. Based on the monthly mean data, corals in the studied area strongly record SSS variation in the monthly or seasonal mean scale. In Mentawai and Simeulue waters, SSS variation is influenced strongly by monsoon. While, in addition to the monsoon, ocean advection also affects seasonal variability of SSS in the Bunaken and Bali waters.

https://doi.org/10.17014/ijog.8.3.119-125
PDF

References

Abram, J.A., Gagan, M.K., Cole, J.E., Hantoro, W.S., and Mudelsee, M., 2008. Recent intensification of tropical climate variability in the Indian Ocean. Nature, DOI:10.1038/ngeo357

Cahyarini S.Y., Pfeiffer, M. , Timm, O., Dullo, W-Chr., and Garbe-Schoenberg D., 2008. Reconstructing seawater d18O from paired coral δ18O and Sr/Ca ratios: Methods, Error Analysis and Problems, with examples from Tahiti (French Polynesia) and Timor (Indonesia). Geochimica et Cosmochimica Acta, 72 (12), p.2841-2853. doi:10.1016/j.gca.2008.04.005

Cahyarini S.Y., Pfeiffer, M., and Dullo, W-Chr., 2009. Calibration of the Multicores Sr/Ca records-Sea Surface Temperature: Records from Tahiti Corals (French Polynesia). International Journal of Earth Sciences, 98, p.31-40. doi:10.1007/s00531-008-0323-2

Cahyarini S.Y., 2010. Reconstruction of seawater δ18O signal from coral δ18O: records from Bali coral, Indonesia. Bulletin of The Marine Geology, 25 (1), p.1-52

Carton, J.A. and Giese, B.S., 2007. A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA). American Meteorological Society. doi:10.1175/2007MWR1978.1

Charles, C.D., Cobb, K., Moore, M. D., and Fairbanks, R. G., 2003. Monsoon-tropical ocean interaction in a network of coral records spanning the 20th century. Marine Geology, 201, p.207-222.

De Villiers, S., Shen, G. T., and Nelson, B. K., 1994. The Sr/Ca temperature relationship in coralline aragonite: Influence of variability in (Sr/Ca) seawater and skeleton growth parameters. Geochimica et Cosmochimica Acta, 58 , p.197-208.

Gordon, A.L., Susanto, D.R., and Vranes, K., 2003. Cool Indonesian Throughflow as a consequence of restricted surface layer flow. Nature, 425, p.824-828.

Gagan, M. K., Chivas, A. R., and Isdale, P. J., 1994. High resolution isotopic records from corals using ocean temperature and mass spawning chronometers. Earth and Planetary Science Letters, 121, p.549-558.

Hautala S.L., Sprintall, J., Potemra, J. T., Chong, J. C., Pandoe, W., Nan Bray, and Ilahude, A. G., 2001. Velocity structure and transport of the Indonesian Throughflow in the major straits restricting flow into the Indian Ocean. Journal of Geophysical Research, 106 (C9), p.19,527-19,546.

Hautala et al., 2001. dataset: https://www.ocean.washington.edu/people/faculty/susanh/spga/spga_data.html.

Hernawan, 2011. Rekonstrusi salinitas berdasarkan pasangan δ18O karang dan suhu dari data model. Tugas Akhir Program Sarjana Jurusan oseanografi ITB.

Hernawan I., Cahyarini, S.Y., and Putri, M, 2012. Rekonstruksi variasi bulanan salinitas di jalur Arus Lintas Indonesia selama ~ 200 tahun: rekaman salinitas dari δ18O karang Bunaken dan Bali, 2012. Jurnal Sumber Daya Geologi, 22 (3).

Oldenborgh, G.J. and Burgers G., 2005. Searching for decadal variatios in ENSO precipitation teleconnections, Geophysical Research Letters, 32 (15), L15701. doi:10.1029/2005GL023110.

Ren, L., Linsley, B. K. , Wellington, G. M., Schrag, D. P., and Hoegh-Guldberg, O., 2002. Deconvolving the δ18O seawater component from subseasonal coral d18O and Sr/Ca at Rarotonga in the southwestern subtropical Pacific for the period 1726 to 1997. Geochimica et Cosmochimica Acta, 67, p.1609-1621.

Schmidt, G. A., 1999. Error analysis of paleosalinity calculations. Paleoceanography, 14 (3), p.422-429.

Smith, T.M. and Reynolds, R. W., 2004.Improved Extended Reconstruction of SST (1854-1997). Journal of Climate, 17, p.2466-2477.

Sprintall, J., Potemra, J.T., Hautala, S., Nancy,A.B., and Pandoe, W.W., 2003. Temperature and SSS variability in the exit passages of the Indonesian Throughflow. Deep-Sea Research Part II, 50 (12-13), p.2183-2204.

Weber, J.N. and Woodhead, P.M.J.,1972. Temperature dependence of oxygen-18 concentration in reef coral carbonate. Journal of Geophysical Research, 77 (3), p.463-473.

IJOG as the journal holds copyright of the published papers.