Thermal and Infrared Studies of Garnierite from the Soroako Nickeliferous Laterite Deposit, Sulawesi, Indonesia

Authors

  • Sufriadin Sufriadin Department of Geological Engineering, Gadjah Mada University, Yogyakarta 55281, Indonesia
  • Arifudin Idrus 1Department of Geological Engineering, Gadjah Mada University, Yogyakarta 55281, Indonesia
  • S. Pramumijoyo 1Department of Geological Engineering, Gadjah Mada University, Yogyakarta 55281, Indonesia
  • I. W. Warmada 1Department of Geological Engineering, Gadjah Mada University, Yogyakarta 55281, Indonesia
  • I. Nur Department of Geological Engineering, Gadjah Mada University, Yogyakarta 55281, Indonesia
  • A. Imai Department of Earth Science and Technology, Akita University, Akita 010-8512, Japan
  • A. M. Imran Department of Geological Engineering, Hasanuddin University, Makassar 90245, Indonesia
  • Kaharuddin Kaharuddin Department of Geological Engineering, Hasanuddin University, Makassar 90245, Indonesia

DOI:

https://doi.org/10.17014/ijog.7.2.77-85

Keywords:

infrared, thermal analysis, kerolite, sepiolite

Abstract

DOI: 10.17014/ijog.v7i2.137

Mineralogical characterization of some garnierite samples from Soroako have been conducted using X-ray diffraction, thermal analysis, and infrared spectroscopy methods. XRD patterns reveal the samples mainly containing the mixture of kerolite (talc-like phase) and serpentine with minor smectite, sepiolite, and silica. Thermal analyses of garnierite samples indicated by DTA curves are in good agreement with patterns that have been reported in literature. Three endothermic peaks normally occur in the ranges between 58º C and <800º C illustrating three steps of weight losses: adsorbed, bound, and hydroxyl/crystal water. One additional weight loss in low temperature region of sepiolite is corresponding to the lost of zeolitic water. Infrared spectra appeared in 3800 - 3200 cm-1 region generally exhibit broad absorption bands, indicating low crystallinities of studied samples and can be assigned to the presence of hydroxyl group bonded to octahedral coordination mainly Mg atom. The bands observed at 1660 cm-1, 1639 cm-1, 1637 cm-1, and 1633 cm-1 in all samples indicate water molecules. FTIR spectra displaying the strong bands at 1045 cm-1, 1038 cm-1, and 1036 cm-1 could be related to the presence of Si-O-Si bonds linking to tetrahedral coordination. The strong absorption bands appeared at 511 cm-1, 505 cm-1, 499 cm-1, and 496 cm-1 in respective samples are attributed to divalent cation bonds (e.g. Mg, Ni-O). Both TG/DTA and FTIR seem to be the powerful tool in diagnosing the crystal chemistry of garnierite which is mainly composed of phyllosilicate minerals.

References

Brindley, G.W., and Hang, Pham, Thi., 1973. The Nature of Garnierites - I: Structures, Chemical Compositions and Color Characteristic. Clays and Clay Minerals, 21, p.27-40. doi:10.1346/ccmn.1973.0210106

Brindley, G.W., and Maksimovic, Z., 1974. The Nature and Nomenclature of Hydrous Nickel-Containing Silicates. Clay Minerals, 10, p.271-277. doi:10.1180/claymin.1974.010.4.05

Brindley, G.W., Bish, D.L., and Wan, H.M., 1977. The nature of kerolite, its relation to talc and stevensite. Mineralogical Magazine, 41, p.443-452. doi:10.1180/minmag.1977.041.320.04

Brindley, G.W., Bish, D.L., Wan, H.M., 1979. Composition, structures, and properties of nickel-containing minerals in the kerolite-pimelite series. American Mineralogist, 64, p.615-625.

Faust, G.T., 1966. The hydrous magnesium silicates- the garnierite group. American Mineralogist, 51, p.279 - 298.

Frost, R.L., Locos, O.B., Ruan, H., Kloproge, J.T., 2001. Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskite. Vibrational Spectroscopy, 27, p.1-13. doi:10.1016/S0924-2031(01)00110-2

Frost, R.L and Ding, Z., 2003. Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites. Thermochimica Acta, 397, p.119-128. doi:10.1016/S0040-6031(02)00228-9

Fuchs, Y., Linares, J., Mellini, M., 1998. Mossbauer and infrared spectrometry of lizardite-1T from Monte Fico, Elba. Physics and Chemistry of Minerals, 26, p.111-115. doi:10.1007/s002690050167

Jones, B.F. and Galan, E., 1988. Palygorskite-sepiolite. In: Bailey, S.W. (ed.), Hydrous Phyllosilicates (Exclusive of Micas). Review in Mineralogy, Mineralogical Society of America, 19, p.631-673.

Karakaya, N., Celik Karakaya, M., Temel, A., Kupeli, S., and Tunoglu, C., 2004. Mineralogical and chemical characterization of sepiolite occurrences at Karapinar (Konia Basin, Turkey). Clay and Clay Minerals, 52, p.495-509. doi:10.1346/CCMN.2004.0520410

Mitrovic, M., Dojcinovict, M., Vucelic, D., Simic, D., and Martic, M., 1999. Sepiolite - An important mineral for industry and environmental protection. Bulletin of the Chemists and Technologists of Macedonia, 18 ( 2), p.101-115.

Nagata, H., Shimoda, S., Sudo, T., 1974. On the dehydration bound of sepiolite. Clay and Clays Minerals, 22, p.285-293. doi:10.1346/ccmn.1974.0220310

Onal, M., Y. H., and Sarikaya, Y., 2008. Some physicochemical properties of the white sepiolite known as pipestone from Eskisehir, Turkey. Clay and Clay Minerals, 56, p.511-519.

Pelletier, B., 1996. Serpentine in nickel silicate ore from New Caledonia. AusIMM Publication Series, p.197-205.

Post, J.E., Bish, D.L., and Heaney, P.J., 2007. Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of sepiolite. American Mineralogist, 92, p.91-97. doi:10.2138/am.2007.2134

Proenza, J.A, Lewis, F.J, Gali, S., Tauler, E., Labrador, M., Melgarejo, J.C., Longo, F., and Bloise, G., 2008. Garnierite mineralization from Falcondo Ni-laterite deposits (Dominican Republic). Macla, 9.

Springer, G., 1974. Compositional and structural variation in garnierites. Canadian Mineralogist, 12, p.381-388.

Sufriadin, Ueno, S., Imai A., Idurs, A., Pramumijoyo, S., and Warmada I. W., 2010. Characteristics and the occurrence of garnierite from the Soroako nickeliferous laterite deposits, Sulawesi. Proceedings, The 39th IAGI Annual Convention and Exhibition, Lombok.

Tauler, E., Proenza, J.A., Gali, S., Lewis, J.F., Labrador, M., Garcia Romero, E., Suarez, M., Longo, F., and Bloise, B., 2009. Ni-sepiolite-falcondoite in garnierite mineralization from the Falcondo Ni-laterite deposit, Dominican Republic. Clay Minerals, 44, p.435-454. doi:10.1180/claymin.2009.044.4.435

Vitti, C., 2010. Serpentine minerals discrimination by thermal analysis. American Mineralogist, 95, p.631-638. doi:10.2138/am.2010.3366

Wells, M.A., Ramanaidou, E.R., Verral, M., and Tessarolo, C., 2009. Mineralogy and crystal chemistry of “garnierites” in the Goro lateritic nickel deposit, New Caledonia. European Journal of Mineralogy, 21, p.467-483. doi:10.1127/0935-1221/2009/0021-1910

Wesolowsky, M., 1984. Thermal decomposition of talc: A review. Thermochemica Acta, 78, p.395-421. doi:10.1016/0040-6031(84)87165-8

Downloads

Published

28-06-2012

How to Cite

Sufriadin, S., Idrus, A., Pramumijoyo, S., Warmada, I. W., Nur, I., Imai, A., … Kaharuddin, K. (2012). Thermal and Infrared Studies of Garnierite from the Soroako Nickeliferous Laterite Deposit, Sulawesi, Indonesia. Indonesian Journal on Geoscience, 7(2), 77–85. https://doi.org/10.17014/ijog.7.2.77-85

Issue

Section

Articles

Citation Check

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.