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Abstract - Landslide susceptibility mapping (LSM) produces a zonation map of landslide susceptibility levels, 
representing the future probability of landslides. It is necessary to give a guideline regarding spatial planning. A machine 
learning method was used, namely a random forest (RF) algorithm to map landslide susceptibility in Python. The case 
study is Palu City and its surrounding areas, which were attacked by a big earthquake on September 28th, 2018. Some 
earlier LSM studies did not discuss hyperparameter tuning, and several others did not mention the training accuracy. 
Therefore, this study is to find out whether the fast model without hyperparameter tuning and frequently overfitting, 
can well produce landslide susceptibility maps. The research questions were addressed by comparing two landslide 
susceptibility maps built with and without hyperparameter tuning using receiver operating characteristics (ROC) and 
landslide density (LD) analyses. This study shows that the area under the curve (AUC) of the landslide susceptibility 
map from the fast RF model without hyperparameter tuning is as high as the AUC from the tuned model map. It also 
happened in both landslide density (LD) maps, and there is no anomaly in the fast model map. Nevertheless, there 
are strange appearances in the fast model map. Therefore, hyperparameter tuning to obtain the optimal model with 
no overfitting is mandatory to predict landslide susceptibility spatially.
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Introduction

Landslide as a natural disaster needs a lot of 
attention since its effect can destroy infrastructure, 
kill people, and cause many more losses that come 

with it (Harsa et al., 2023). A landslide susceptibility 
map indicates the landslide-prone areas, which can 
be used by planners or policy-makers, scientists, 
and the community for the landslide-disaster risk 
reduction effort. Machine learning-based landslide 
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susceptibility mapping (LSM) methods have re-
cently become popular (Kavzoglu et al., 2019), since 
information technology is growing fast. It makes 
machine learning modeling can be run lightly and 
easily nowadays. The abundance of geospatial data 
such as satellite images, remotely sensed data, and 
historical landslide data in the last decade supports 
it. This mapping method is suitable on a medium 
scale (Westen et al., 2006) for quite large areas, like 
in this studied area (Barredo et al., 2000). 

The location of the study is Palu City and its 
surrounding areas. The lithology composition of 
this area mainly consists of Holocene alluvial 
deposits in the centre, characterized by a plain 
area. This area is encompassed by two hills on 
the right and left, composed of  Pleistocene Pakuli 
Formation, a Miocene granite intrusive rock ex-
posed in the eastern part of the studied area. The 
Upper Miocene Lariang Formation, underlain by 
metamorphic rocks of the Latimojong Formation, 
dominates the western part (Sukamto, 1973). 
The studied area is located along the Palu Koro 
Fault Valley, flanked by two hills on the right 
and left sides. Palu City faced a big 7.5 Richter 
Scale earthquake on September 28th, 2018, which 
caused 4,340 fatalities (Arifianti et al., 2023). The 
shakes triggered the landslides in the hills arround 
the city (Figure 1). 

The characteristics of Palu acted as landslide 
causative factors were compiled into a geoda-

tabase. The causative factors consist of twelve 
layers, i.e., aspect, elevation, slope gradient, 
lithology, peak ground acceleration (PGA), land 
use, distance to roads, distance to rivers, distance 
to lineaments, road density, river density, and lin-
eament density. This study utilized the causative 
factors as independent types with the successfully 
inventoried landslides to do the LSM. The output 
of LSM is a zonation map of landslide suscep-
tibility levels, which depicts the probability of 
landslides in the future (Tyagi et al., 2022). 

The machine learning method is a novel 
method to conduct LSM (Reichenbach et al., 
2018) belonging to data-driven models, which 
tend to be able to avoid subjectivity compared to 
other previous methods. Machine learning meth-
ods perform more see-through calculations and 
improve accuracy (Chen et al., 2018). Bivariate 
statistical-based LSM is a data-driven model (No-
hani et al., 2019; Arifianti et al., 2020). However, 
it needs categorical type data for each landslide 
causative factor, and there is lack of standard to 
classify each parameter instead of using heuristic 
classification (Chen et al., 2017). In the machine 
learning, various data types can be run together, 
even continuous and nominal-type data (Cao et 
al., 2020), and then it can avoid subjectivity. Some 
continuous data represent geo-environmental 
values close to actual values, like earth surface 
altitude, slope gradient, distance to rivers, etc.

Figure 1. Landslide distribution map in the studied area.
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Many prior LSM studies used machine learn-
ing models. Some researchers used one (Yao et 
al., 2008; Taalab et al., 2018) or more machine 
learning algorithms (Kalantar et al., 2018; El-
Magd et al., 2021; Shahzad et al., 2022). Those 
algorithms are decision trees, random forests (Ta-
alab et al., 2018; El-Magd et al., 2021; Shahzad 
et al., 2022), support vector machines (Shahzad 
et al., 2022), naïve Bayes (El-Magd et al., 2021), 
k-nearest neighbour (El-Magd et al., 2021), and 
many more. This LSM study applied random for-
est (RF), considering previous researchers proved 
this method superior (Chen et al., 2018). It is a 
nonlinear algorithm suitable for overcoming clas-
sification problems in complex phenomena like 
landslide occurrence (Cao et al., 2020). 

The RF model requires hyperparameter tun-
ing to optimize it (Sun et al., 2020). An optimum 
model has test accuracy lower than training ac-
curacy, and the training accuracy is not equal 
to 1.0 or overfitting (Muller and Guido, 2016). 
Overfitting occurs when a model is too complex 
and too fit to the particularities of the training data 
(Muller and Guido, 2016). Test accuracy compares 
the prediction of test data with the actual test data, 
while training accuracy compares the prediction of 
the training data with the actual training data. The 
test data is not involved in the modeling, whereas 
the training data is used to build a model. 

Some previous LSM studies did not mention 
training accuracy or discuss hyperparameter tun-
ing. Therefore, this paper aims to study whether 
the fast model without hyperparameter tuning, 
which frequently overfits, can produce good 
landslide susceptibility maps. This study answered 
the research question by looking at two landslide 
susceptibility maps that were made with and with-
out hyperparameter tuning. The maps were made 
using receiver operating characteristics (ROC) and 
landslide density (LD) analysis (Chen et al., 2018).

Methods

Random forest (RF) is an ensemble method 
that combines many decision trees. The training 
dataset was built using the bagging (bootstrap 

aggregating) concept. Bagging produces many 
new training datasets. Each new training dataset 
takes a sample from the original dataset with a 
replacement (bootstrap sample), i.e., it takes a 
sample, returns it to the original dataset, and takes 
another sample at random. By sampling with 
replacement, the same sample can be repeated in 
each new training dataset, and this causes the new 
dataset to be different for each tree (Taalab et al., 
2018). As a supervised learning method, RF needs 
a response variable or desired output (Muller and 
Guido, 2016; Islam et al., 2021).

The twelve landslide causative factors were 
prepared with a cell size of 10 m. TerraSAR X 
satellite data with a cell size of 7.5 m was used 
to get all the elements that make up the digital 
elevation model (DEM), such as aspect, elevation, 
and slope gradient (Arifianti et al., 2023). Because 
LSM is a binary classification, it requires two 
classes for the response variable: landslide loca-
tion and non-landslide location  (He et al., 2021). 
Landslide locations were obtained from landslide 
inventory, while nonlandslide locations were con-
structed from sampling on the two lowest classes 
of bivariate statistical landslide susceptibility map 
produced by a previous study (Arifianti et al., 2023). 

The number of landslides is 591 points, and 
the same number of nonlandslides were generated 
(Zhang et al., 2019). All the thematic layers and 
the response variables were prepared in the geo-
graphic information system (GIS) environment. 
Three causative factors have nominal type data, 
i.e., lithology, aspect, and land use, while the rest 
have continuous type data.

The slope gradient is one of the manda-
tory parameters for landslide susceptibility study 
(Çellek, 2022). It influences slope stability, where 
a more significant slope gradient makes the slope 
likely to collapse if the shear stress exceeds its 
shear strength. The elevation factor was chosen 
in this modeling since it may relate to rainfall and 
vegetation types, affecting landslides. Especially 
for earthquake-induced landslides, the ground 
tremor will be higher if the elevation increases. 
The slope aspect refers to sun exposure, which 
affects weathering levels and is closely connected 
to landslide probability.
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Meanwhile, lithology influences soil perme-
ability and strength associated with slope gra-
dients. The lithology map is scaled to 1:50,000 
obtained from the Centre for Geological Survey 
of Indonesia. Peak ground acceleration (PGA) is 
assumed to be an earthquake-leading indicator 
and is essential as a driving factor for earthquake-
induced landslides. Besides, the lineament ele-
ment was used as an independent factor. Faults 
and fractures were added in the lineament ele-
ment, which showed the weak zone regarding 
lithological characteristics. Lineaments also con-
trol the existence of rivers structurally (Ngo et al., 
2021), so river element was used to contribute to 
this modeling. Two factors based on rivers used 
here were the distance to rivers and river density.

Land use may control slope stability; which 
is enhanced by vegetation regarding mechanical 
characteristics. Land use is one of the anthropo-
genic factors where land-use changes affect the 
slope stability. Regarding anthropogenic factors, 
this study considered roads as an essential element, 
so distance to roads and road density layers were 
utilized in this modeling. The street development 
alters the slope stability of natural slopes since there 
is a cut-and-fill activity (Awawdeh et al., 2018).

A total of 1,182 samples were used as input in 
Python; 70 % was used as training data, and the rest 
for test data (Zhang et al., 2019). Each data point 
has a label, whether landslide or nonlandslide, 
bringing twelve geo-environment values. Besides, 
each sample has a geographical location: longitude 
and latitude. The coordinates for all data points are 
essential to trace which data points are landslides 
for training and test data, etc. Geographical loca-
tions are needed for landslide susceptibility map 
validation using receiver operating characteristics 
(ROC) (Pourghasemi et al., 2014). 

 Scikit-learn was applied, a Python package 
widely used for data science, to implement a 
random forest (RF) algorithm for landslide sus-
ceptibility mapping (LSM).  The default values of 
the model parameters were used to build a fast RF 
model, as shown in Table 1. Aside from that, hy-
perparameter tuning was done to create the tuned 
model. The most common method, grid search, 
was used for this hyperparameter tuning. Grid 

search tries all possible combinations of desired 
model parameters (Muller and Guido, 2016). 

In this study, five model parameters were 
tuned as follows: the number of decision trees 
(n_estimators), maximum depth of all trees 
(max_depth), minimum number of samples to 
split (min_samples_split), minimum number of 
samples in the leaves (min_samples_leaf), and 
maximum number of independent variables in all 
trees (max_features). Model parameters define the 
random forest and decision tree structure (Figure 
2), where numerous decision trees compound a 
random forest. Every decision tree in the random 
forest (RF) is different because of the nature of 
randomness in it, like the samples, the number of 
independent variables, and which variables are 
involved in each decision tree, and so on.

 Fast and tuned models were evaluated using 
the accuracy score in the Python environment. 
Two kinds of accuracy scores were performed, 
i.e., training and test accuracy scores. The test 
accuracy is the model accuracy which compares 

No Parameter Value
1 n_estimators 100
2 criterion gini
3 max_depth None
4 min_samples_split 2
5 min_samples_leaf 1
6 min_weight_fraction_leaf 0.0
7 max_features sqrt
8 max_leaf_nodes None
9 min_impurity_decrease 0.0
10 bootstrap True
11 oob_score False
12 class_weight None
13 max_samples None

Table 1. Default Random Forest Parameters

Figure 2. Decision tree diagram.
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the prediction of test data with the actual test 
data. Meanwhile, the training accuracy compares 
the prediction of the training data with the actual 
training data. Whether the model is overfitting 
can be determined by calculating training and 
test accuracy. 

These two models were used to generate spa-
tial prediction results in the form of spatial land-
slide susceptibility indices, and to classify each 
index map into a landslide susceptibility map. The 
index ranges from 0.0 to 1.0, and is categorized 
into five susceptibility classes: very low, low, 
moderate, high, and very high. To compare the 
two resulting maps from the fast model and the 
tuned ones, they were evaluated by calculating 
the area under the curve (AUC) of the receiver 
operating characteristic (ROC) (Pourghasemi et 
al., 2014) beyond the Python environment. The 

range of AUC is between 0.0 to 1.0 with details 
as follows: 0.5 - 0.6 (poor), 0.6 - 0.7 (average), 
0.7 - 0.8 (good), 0.8 - 0.9 (very good), and more 
than 0.9 is excellent (Pourghasemi et al., 2014). 
Besides, landslide density (LD) analysis was 
used to compare two landslide susceptibility 
maps. The previous study used LD analysis to 
compare the landslide susceptibility maps from 
three different models (Chen et al., 2018). The LD 
is well-defined as the percentage of landslides in 
each class (PL) by the percentage of area in each 
class (PA). PA is the area of each class divided by 
the total area of the researched area, and PL is the 
count of landslides divided by the total number of 
landslides. Accurate landslide susceptibility maps 
should display a higher LD for classes of higher 
susceptibility (Chen et al., 2018). The flow chart 
of this method can be seen in Figure 3.

Bivariate statistical landslide
susceptibility map

Two lowest classes

591 non-landslide
points

Landslide inventory

591 landslide points
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consisting of 12
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The fast RF model

No hyperparameter tuning

Data

Figure 3. Flow chart of this study.
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In this RF modeling, 1,182 data points were 
used; half are landslides, and the other half are 
nonlandslides. Some 827 samples (70 %) were 
used to train the model, and 355 were used to 
test the model.

Result

The twelve processed causative factors, 
which are superimposed with landslide and 
nonlandslide points, can be seen in Figure 4. 

Figure 4.  Twelve landslide causative maps were superimposed with landslide and nonlandslide points.
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Two landslide susceptibility models were 
conducted, one with hyperparameter tuning and 
not on another one. In the fast model, hyperpa-
rameter tuning was not employed; the model is 
simplistic as it solely utilizes the default values, 
hence conserving time. Hyperparameter tuning 
was done using the grid search method involv-
ing five model parameters. The tuned model is 
the best constructed by the following parameter 
values: max_depth was 7, max_features was 3, 
min_samples_leaf was 2, min_samples_split 
was 5, and n_estimators was 150. The tuned 
model consists of 150 decision trees with a 
default value of 100. All decision trees have 
seven depths maximum, showing that they are 
not too long to reach the leaves. The causative 
factors used in each decision tree maximum is 3 
(max_features= 3), not much involving most of 
the variables. The decision trees in the random 
forest will differ (Muller and Guido, 2016), be-
cause the randomness in picking the variables is 
high, considering that the total causative factors 
involved are 12. 

Both RF, the fast RF and the tuned model, 
have the same model accuracy of 0.963, but the 
training accuracy of the fast RF model is 1.0, 
which shows there is overfitting. Conversely, hy-
perparameter tuning can avoid overfitting (Table 
2). Both models were used to generate landslide 
susceptibility index maps. 

ROC analysis was performed to obtain the 
map accuracy identified by their AUCs, which 
compared the landslides in test data with the 
landslide susceptibility map. In this analysis, 
each landslide susceptibility index map was 
categorized into thirty-two classes using the 
geometrical interval classification method. The 
number of landslides and the area were calculated 

Table 2. Performances of the Random Forest Models

Training 
accuracy Test accuracy

Fast RF model 1.000 0.963
Tuned RF model 0.995 0.963

for each class using GIS tools. The values were 
plotted in a curve in which the x-axis represents 
the cumulative percentage of the area, and the 
y-axis represents the cumulative percentage of 
landslides. The results showed that the AUC of 
landslide susceptibility maps from the fast RF 
model is 0.897, and from the tuned model is 
0.893 (Figure 5). 

Figure 5. The area under the curve (AUC) represents the 
quality of landslide susceptibility maps.
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Besides, landslide density (LD) was calculat-
ed. The previous study used the formula to com-
pare landslide susceptibility maps, generalized 
from three different machine learning models 
(Chen et al., 2018). In this study, the LD analy-
sis observed the accuracy of every landslide 
susceptibility map. The landslide susceptibility 
maps (Figure 6) were classified into five classes 
using the geometrical interval classification 
method. In this LD analysis, landslides are the 
total landslides used for the training and test 
data. PL means the percentage of landslides in 
every class, PA means the percentage of the area 
of each class, and LD is the landslide density of 
each class (Table 3). 

Accurate landslide susceptibility maps 
should display a higher LD for classes of higher 
susceptibility (Chen et al., 2018), which agrees 
with LD in the two maps. Figure 6 presents the 
maps, zooming in on specific sections.

IJ
OG



Indonesian Journal on Geoscience, Vol. 12 No. 1 April 2025: 43-53

50    

Discussion

The accuracy of the model or the map is 
relatively high, > 0.8, while the fast RF model 
is 1.0, showing overfitting. It happens when a 
model is too complex and too fit to the particu-
larities of the training data (Muller and Guido, 
2016). The overfitting in the fast RF model can 
show an anomaly in the resulting map (Figure 
6). Conversely, hyperparameter tuning can avoid 
overfitting, and the resulting map looks better. 

The very high class on the susceptibility 
maps has the highest LD (Table 3). Both maps 
have similar LD, which means that there is no 
anomaly in the LD of the fast model map. The 
fast and tuned model maps are shown in Figure 6a 
and Figure 6b, respectively. The zoomed-in map 
presented in Figure 6a exhibits unusual features, 
as illustrated in Figure 6c. Figure 6c displays two 
crescent shapes, whereas Figure 6d, which pro-
vides a zoomed-in view of the tuned model map 
(Figure 6b), does not exhibit any such anomalies. 

Figure 6. Landslide susceptibility maps using the RF algorithm, from: (a) Fast model, (b) Tuned model, and (c) the Zoom-in 
of the anomaly appearances.
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The calculation of AUC (Figure 5) and landslide 
density (LD) (Table 3) for the no-hyperparameter 
model map did not reveal any anomalies. How-
ever, it is evident that hyperparameter tuning is es-
sential until overfitting is eliminated in the model.

A model is the fast model or the tuned model, 
which was built based on the training data, pairs 
of input, and target. In this study, the input, or 
predictor variable, is the landslide causative fac-
tor, and the target is landslides and non-landslides. 
A supervised algorithm, like the random forest 
(RF), learns the relationship between the input 
and target to produce a model to predict the new 
data. The optimal model lies in the optimal range 
of model complexity, avoiding both overfitting 
and underfitting (Figure 7). 

The underfitting model shows the model is 
too simple, and there is a lot of generalization in 
creating the model. The underfitting model has 
low accuracy both in training and test accuracy. 
Conversely, the overfitting model achieves the 
highest training accuracy, yet it struggles to make 
accurate predictions. Although it is already a 
principle in machine learning modeling, several 
studies have given little consideration. Overfitting 
generally occurs when a model is created without 
parameter tuning or when tuning is performed 
but not to the best of its ability. For example, this 
research used many model parameters, those are 
five parameters. Each parameter utilized multiple 
input values during the grid search process to 
ensure that the resulting model did not have a 

Figure 7. Model complexity trade-off versus training and 
test accuracy (Muller and Guido, 2016).
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Underfitting
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training accuracy of 1.0. Therefore, a significant 
effort in hyperparameter tuning is required to 
build an optimal random forest model and prevent 
overfitting.

Conclusions

This study is to find out whether the fast 
model without hyperparameter tuning, frequently 
overfitting, can well produce landslide suscepti-
bility maps. The result shows that the area under 
the curve (AUC) of the landslide susceptibility 
map from the fast RF model without hyperpa-
rameter tuning is as high as the AUC from the 
tuned model map. It also happened in both map 
landslide density (LD), and there is no anomaly 
in the fast model map. Nevertheless, there are 
strange appearances in the fast model map. It 
can be concluded that hyperparameter tuning to 
obtain the optimal model with no overfitting is 
mandatory to predict the landslide susceptibility 
spatially. The model accuracy has to be calculated 
toward training and test data to observe whether 
there is overfitting. If overfitting happens, it is 
encouraged to do more hyperparameter tuning 
until the model has no overfitting.

Acknowledgements

This research was funded through the Programme 
House of Research Organization for Electronic 
And Informatics (OREI) of the National Research 
and Innovation Agency (BRIN). The authors 
would like to thank the Head of Research Centre 
for Geological Disaster (BRIN) who has encour-
aged the authors to carry out this research.

References

Arifianti, Y., Pamela, Agustin, F., and Muslim, 
D., 2020. Comparative study among bivariate 
statistical models in landslide susceptibility 
map, Indonesian Journal on Geoscience, 7 
(1), p.51-63. DOI:10.17014/IJOG.7.1.51-63.

IJ
OG



Indonesian Journal on Geoscience, Vol. 12 No. 1 April 2025: 43-53

52    

Arifianti, Y., Pamela, P., Iqbal, P., Sumaryono, 
S., Omang, A., and Lestiana, H., 2023. 
Susceptibility Assessment of Earthquake-
induced Landslides, Sulawesi Mw 7.5 Earth-
quake, Indonesia. Rudarsko-Geološko-Naftni 
Zbornik, (August), p.43-54. DOI:10.17794/
rgn.2023.3.4.

Awawdeh, M.M., El Mughrabi, M.A., and Atal-
lah, M.Y., 2018. Landslide susceptibility 
mapping using GIS and weighted overlay 
method: a case study from North Jordan, En-
vironmental Earth Sciences, 77 (21), p1-15. 
DOI:10.1007/s12665-018-7910-8.

Barredo, J.I., Benavides, A., Hervás, J., and 
Westen, C.J. van, 2000. Comparing heuristic 
landslide hazard assessment techniques using 
GIS in the Tirajana basin, Gran Canaria Island, 
Spain. International Journal of Applied Earth 
Observation and Geoinformation, 2000 (1), 
p.9-23. DOI:10.1016/s0303-2434(00)85022-9.

Cao, J., Zhang, Z., Du, J., Zhang, L., Song, Y., and 
Sun, G., 2020. Multi-geohazards susceptibility 
mapping based on machine learning—a case 
study in Jiuzhaigou, China, Natural Hazards, 
102 (3), p.851-871. DOI:10.1007/s11069-
020-03927-8.

Çellek, S., 2022. Effect of the slope angle and its 
classification on landslides, Himalayan Geol-
ogy, 43 (1), p.85-95.

Chen, W., Pourghasemi, H.R., and Naghibi, 
S.A., 2017. A comparative study of landslide 
susceptibility maps produced using support 
vector machine with different kernel functions 
and entropy data mining models in China. 
Bulletin of Engineering Geology and the En-
vironment, 77 (2), p.647-664. DOI:10.1007/
s10064-017-1010-y.

Chen, W., Zhang, S., Li, R., and Shahabi, H., 
2018. Performance evaluation of the GIS-
based data mining techniques of best-first 
decision tree, random forest, and naïve Bayes 
tree for landslide susceptibility modeling, Sci-
ence of the Total Environment, 644, p.1006-
1018. DOI:10.1016/j.scitotenv.2018.06.389.

El-Magd, S.A.A., Ali, S.A., and Pham, Q.B., 
2021. Spatial modeling and susceptibility 

zonation of landslides using random forest, 
naïve bayes and K-nearest neighbor in a com-
plicated terrain. Earth Science Informatics, 
14 (3), p.1227-1243. DOI:10.1007/s12145-
021-00653-y.

Harsa, H., Hidayat, A.M., Mulsandi, A., Supri-
hadi, B., Kurniawan, R., Habibie, M.N., Huta-
pea, T.D., Swarinoto, Y.S., Makmur, E.E.S., 
Fitria, W., Sri Sudewi, R.S., and Praja, A.S., 
2023. Machine learning and artificial intelli-
gence models development in rainfall-induced 
landslide prediction, IAES International Jour-
nal of Artificial Intelligence, 12 (1), p.262-270. 
DOI:10.11591/ijai.v12.i1.pp262-270.

He, Q., Wang, M., and Liu, K., 2021. Rapidly as-
sessing earthquake-induced landslide suscep-
tibility on a global scale using random forest, 
Geomorphology, 391, 107889. DOI:10.1016/j.
geomorph.2021.107889.

Islam, M.M., Kashem, M.A., and Uddin, J., 
2021. Fish survival prediction in an aquatic 
environment using random forest model, IAES 
International Journal of Artificial Intelligence, 
10 (3), p.614-622. DOI:10.11591/ijai.v10.
i3.pp614-622.

Kalantar, B., Pradhan, B., Amir Naghibi, S., 
Motevalli, A., and Mansor, S., 2018. Assess-
ment of the effects of training data selection 
on the landslide susceptibility mapping: a 
comparison between support vector machine 
(SVM), logistic regression (LR) and artificial 
neural networks (ANN). Geomatics, Natural 
Hazards and Risk, 9 (1), p.49-69. DOI:10.10
80/19475705.2017.1407368.

Kavzoglu, T., Colkesen, I., and Sahin, E.K., 2019. 
Landslides: Theory, Practice and Modelling. 
In: Pradhan, S.P., Vishal, V., and Singh, T.N., 
(eds.), 50, p.283-301. DOI:10.1007/978-3-
319-77377-3.

Muller, A.C. and Guido, S., 2016. Introduc-
tion to Machine Learning with Python: A 
Guide for Data Scientists. In: Schanafelt, 
D., (ed.), O’Reilly Media, Inc, Sebastopol, 
CA, retrieved from internet: https://www.
oreilly.com/library/view/introduction-to-
machine/9781449369880/, 392.

IJ
OG



Hyperparameter Tuning on Machine Learning-Based Landslide Susceptibility Mapping 
(Case study: Palu City and Its Surrounding areas) (Sukristiyanti et al.)

53

Ngo, T.Q., Dam, N.D., Al-Ansari, N., and 
Amiri, M., Phong, T. Van, Prakash, I., Le, 
H. Van, Nguyen, H.B.T., and Pham, B.T., 
2021. Landslide Susceptibility Mapping 
Using Single Machine Learning Models: A 
Case Study from Pithoragarh District, India.
Advances in Civil Engineering, 2021, p.1-19. 
DOI:10.1155/2021/9934732.

Nohani, E., Moharrami, M., and Sharafi, S., 2019. 
Landslide Susceptibility Mapping Using Dif-
ferent GIS-Based Bivariate Models. Water 
MDPI, 11 (1402), p.1-22.

Pourghasemi, H.R., Moradi, H.R., Fatemi Aghda, 
S.M., Gokceoglu, C., and Pradhan, B., 2014. 
GIS-based landslide susceptibility mapping 
with probabilistic likelihood ratio and spatial 
multi-criteria evaluation models (North of 
Tehran, Iran). Arabian Journal of Geosci-
ences, 7 (5), p.1857-1878. DOI:10.1007/
s12517-012-0825-x.

Reichenbach, P., Rossi, M., Malamud, B.D., 
Mihir, M., and Guzzetti, F., 2018. A review 
of statistically-based landslide susceptibil-
ity models. Earth-Science Reviews, 180 
(March), p.60-91. DOI:10.1016/j.earsci-
rev.2018.03.001.

Shahzad, N., Ding, X., and Abbas, S., 2022. A 
Comparative Assessment of Machine Learn-
ing Models for Landslide Susceptibility 
Mapping in the Rugged Terrain of Northern 
Pakistan. Applied Sciences (Switzerland), 12 
(5), p.1-13. DOI:10.3390/app12052280

Sukamto, R., 1973. Geological Map of the Palu 
Sheet, Sulawesi, scale 1:250.000. Geological 
Research and Development Centre.

Sun, D., Wen, H., Wang, D., and Xu, J., 2020. 
A random forest model of landslide suscep-
tibility mapping based on hyperparameter 
optimization using Bayes algorithm. Geo-
morphology, 362, 107201. DOI:10.1016/j.
geomorph.2020.107201.

Taalab, K., Cheng, T., and Zhang, Y., 2018. Map-
ping landslide susceptibility and types using 
Random Forest. Big Earth Data, 2 (2), p.159-
178. DOI:10.1080/20964471.2018.1472392.

Tyagi, A., Kamal Tiwari, R., and James, N., 2022. 
A review on spatial, temporal and magni-
tude prediction of landslide hazard. Journal 
of Asian Earth Sciences, X, (7), 100099. 
DOI:10.1016/j.jaesx.2022.100099.

Westen, C.J., Asch, T.W.J. van, and Soeters, R., 
2006. Landslide hazard and risk zonation - 
Why is it still so difficult?. Bulletin of Engi-
neering Geology and the Environment, 65 (2), 
p.167-184. DOI:10.1007/s10064-005-0023-0. 

Yao, X., Tham, L.G., and Dai, F.C., 2008. 
Landslide susceptibility mapping based on 
Support Vector Machine: A case study on 
natural slopes of Hong Kong, China. Geomor-
phology, 101 (4), p.572-582. DOI:10.1016/j.
geomorph.2008.02.011.

Zhang, T., Han, L., Han, J., Li, X., Zhang, H., 
and Wang, H., 2019. Assessment of landslide 
susceptibility using integrated ensemble frac-
tal dimension with Kernel logistic regression 
model. Entropy, 21 (2), p.1-23. DOI:10.3390/
e21020218.IJ
OG


