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Abstract  - This article presents the discovery of a buried fault beneath the soil layers in the Mt Malabar area, which comple-
ments the information on suspected faults on the previous geological maps. Using an Electrical Resistivity Tomography 
(ERT) method, this study aims to delineate the layer discontinuity as a fault and describe the subsurface geology. This study 
employed a 1400 m long ERT line as the main line to identify buried fault traces, while each ERT line has an 800 m long 
installation across the main ERT line to obtain the direction of the minor fault. The investigation found a minor fault in the 
rock layer at a high resistivity layer, approximately 160 m below the surface. The identified rock units are believed to include 
sandy clay in the upper layer, followed by tuff, sandstone, and basalt lava in the lower layer because its resistivity value is 
above 250 Ohm.m. The 3D ERT model interpreted a minor buried fault as a weak zone beneath the soil and obtained the 
fault strike at approximately N 310°E and dipping 66°. Furthermore, these results are strengthened by the geological map, 
which confirms that ERT L-1 and ERT L-3 profiles coincide with a suspected fault in the Qmt rock unit area.
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Introduction

Mount Malabar, located in southern Bandung, 
features a complex geological setting, primarily 
composed of volcanic rocks formed by past vol-
canic activity. The area has several minor buried 
faults, significantly influencing the Bandung re-
gion southern rim. The geological map indicates 
many minor buried faults on the southern rim 
of the Bandung Basin (Alzwar et al., 1992). To 
accurately identify and characterize these buried 
fault systems, a method must be used to investi-
gate their existence.

A nondrilling way to estimate subsurface char-
acterization is to apply geophysical techniques 

such as geo-electric and seismic methods (Rey et 
al., 2020). This method is used if faults buried in 
the ground have been indicated first. Next, drilling 
techniques are considered after obtaining more 
definite information.

The use of geo-electric methods to investigate 
buried faults has been widely used in several 
case studies, such as in a fault zone located in 
the southwestern part of İzmir City, where the 
fault creeps in the urban area of San Gregorio in 
Catania, the southern flank of Mount Etna, Sicily 
- Italy (Drahor and Berge, 2017; Imposa et al., 
2015), or in the southern Apennines and St. James 
(Galli et al., 2006; Jacob et al., 2013; Imposa et 
al., 2015). Although the geophysical methods 
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encounter a significant restriction in measurement 
resolution, their interpretation can be ensured to 
be accurate by performing a specific validation 
procedure, such as well testing.

This paper outlines a geophysical explora-
tion of a minor fault within the volcanic zone 
of Mount Malabar. This mount is located in 
the Great Bandung Basin with the highest peak 
reaching 2,968 m. The mountain surrounding the 
Greater Bandung Basin has several faults due to 
the subduction zone slab movement activity in 
the southern part of the Java Island (Harja et al., 
2021). Mount Malabar has a complex volcanic 
history characterized by the evidence of various 
geomorphologic processes lasting more than 
50,000 years (Dam et al., 1996). Mount Malabar 
is a stratovolcano composed of layers of lava, 
pyroclastic material, and volcanic ash formed by 
successive eruptions over time (Dam et al., 1996; 
Haryanto et al., 2017). 

Mount Malabar has been an intriguing re-
search object in geoscience studies, especially 
hydrological research disasters and geothermal 
energy resources. Many studies have been con-
ducted on geophysical, geological, and geochemi-
cal methods around Mount Malabar (Sudarman 
et al., 2006; Handayani et al., 2012a; Haryanto et 
al., 2017). One of them uses the gravity method. 
Handayani et al. (2012b) stated that using gravity 
could indicate a possible active fault.

 The Electrical Resistivity Tomography 
(ERT) method is a powerful and cost-effective 
geophysical method that can detect buried faults 
in urban areas, can determine the thicknesses 
of soil and basalt flows, and can identify other 
subsurface geological structures (Storz et al., 
2000; Al-Amoush and Rajab, 2018; Susanto 
et al., 2023). The ERT survey can traverse the 
electrodes along a straight line or create a grid to 
cover a larger area. To address the problem of a 
larger studied area and monitoring, several stud-
ies have developed an automatic resistivity meter 
with an optimized data acquisition protocol and 
remote operation to servers using a wireless in-
ternet connection or a Long-Range Radio (LoRa) 
communication with the advantage of low-power 

communication (Binley and Slater, 2020; Qiang et 
al., 2022; Nurpadillah et al., 2024; Holmes et al., 
2020). However, automatic and remote operation 
is not yet needed to investigate the buried minor 
faults in western Mount Malabar unless the study 
aims to detect the water reservoirs. 

ERT provides fast and low-cost 2D and 3D 
subsurface models compared to other geophysi-
cal methods such as seismic and deep well-tests 
fields (Griffiths and Barker, 1993; Epting et al., 
2012; Drahor and Berge, 2017). ERT is also used 
to discover a minor fault buried due to volcanic 
activity in a past event and buried through ero-
sion, weathering, and other climate processes. 
Discontinuities in rock layers were due to active 
fault deformation in Ambon, which triggered 
some land subsidence in Negeri Sila, Nusalaut, 
and Central Maluku (Amukti et al., 2022), 
which were reported using ERT. Furthermore, 
the other use of ERT was for the identification 
of lateral changes in facies and minor faults at 
Loma de Ubeda, southeastern Spain (Rey et 
al., 2020), and fault network formation in the 
Callovo-Oxfordian black marls, such as Super-
Sauze big landslide and Draix-Lava Landslides 
(Marc et al., 2017).

The purpose of this study is to investigate 
minor or shallow buried faults around the slopes 
of Mount Malabar using the ERT method. This 
study can advance our understanding of the 
geological conditions in the relatively shallow 
subsurface, especially the minor faults, and can 
recognize geological structures in various geo-
logical fields, such as rain catchment areas, areas 
with potential geological disasters, and natural 
resource prospect areas (Saputra et al., 2020; 
Fronzi et al., 2021).  

Studied Site
Mount Malabar is a volcanic complex in the 

southern Bandung Basin rim of West Java, Indo-
nesia. As a Quaternary volcano, Mount Malabar 
is the central structure in the southern part of the 
Bandung Basin. The Malabar Volcanic Complex 
was formed during the Pleistocene era (Dam et 
al., 1996; Bogie et al., 1998; Hendarmawan, 
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Figure 1.  The digital elevation model of the Great Bandung Basin and Mount. Malabar as the studied site.

2002).  Mount Malabar is a stratovolcano with 
volcanic rock layers such as lava, tuff, and brec-
cia (Bronto, 2006). The rock consists of andesite, 
basalt, and pumice. Brown volcanic ash forms 
the matrix with poor sorting. Furthermore, rock 
unit descriptions have been comprehensively de-
scribed in the southern Bandung region geological 
disaster potential and prospect zone  (Sulaksana 
et al., 2019). Mount Malabar is encircled by a 
complex alluvial system that primarily flows to-
wards the Bandung Basin. Substantial evidence 
indicates the presence of numerous steep slope 
gradients on the northern aspect of Mount Mala-
bar, oriented towards the Bandung Basin (Suhari 
and Siebenhüner, 1993; Pratama et al., 2016). 
Figure 1 illustrates Mount Malabar position in 
the Bandung Basin.

Geophysical measurements were conducted 
on the northern (7° 3' 35.89'' S and 107° 38' 
45.83'' E) and western slopes (7° 8' 10.91'' S and 
107° 36' 35.66'' E), with slope gradients mainly 
in the range of 25 -  45 %. The peak of Mount 
Malabar is at 2,968 m above sea level (m asl.), 
while the studied area is located on the western 
slope of Mount Malabar, approximately 1400 m 
asl. The erosion process around Mount Mala-
bar is cone-shaped volcanoes giving rise to an 

intricate alluvial system. Due to the prevailing 
circumstances, the minor faults have become 
increasingly obscured and are likely to be buried 
beneath the surface terrain. A blue box in Figure 2 
shows the geological map of minor faults buried 
in the Qmt rock unit area. In addition, the thin 
weathering layer in the studied area indicated that 
ground movement rarely occurred. Thus, natural 
disasters like landslides and debris flows are rare 
near Mount Malabar (Harja et al., 2021).

The studied area is rich in water springs that 
emerge from cracks in the volcanic rocks. How-
ever, at the base of Mount Malabar, the water 
supply is limited, possibly due to faults that in-
tersect the aquifer. In addition to springs, several 
streams traverse the area. Other characteristics 
include rock outcrops, although these do not offer 
definitive information on the minor faults under 
investigation.

Methods and Materials

Methods
Electrical resistivity tomography (ERT) is a 

geophysical method that can detect minor buried 
faults. In general, ERT can be a helpful tool for 
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detecting minor buried faults, providing high-
resolution images of the subsurface, and allow-
ing for the identification of geological structures 
and changes in lithology.  The electrodes inject 
electrical current into the ground, resulting in 
voltage being measured. Based on the electrical 
properties of the subsurface materials, ERT can 
provide a three-dimensional image of the sub-
surface, traversing the electrodes along a straight 
line or creating a grid to cover a larger area. The 
electrode number and spacing may vary depend-
ing on the resolution required. 

The SuperSting™ electrical resistivity meter 
was used to measure resistivity, and the multi-
channel system automatically determines the 
electrical configuration and geometric param-
eters. The device has an internal microprocessor 
and a switching unit that automatically enables it 
to record hundreds of resistivity measurements 
independently. The SuperSting™ resistivity 
meter also automatically records measurement 
settings and field setup. The measurement se-
quence, such as the electric current duration, 
survey parameter, and configuration type, can 
be set in the field or prepared beforehand, and 

uploaded to the microprocessor system (Ghanem 
et al., 2022).

The DC resistivity method is popular due 
to its simple principles and interpretation. It is 
employed to determine subsurface resistivity 
(rho). The technique relies on injecting an elec-
trical current into the subsurface via a pair of 
current electrodes, A and B, and then measuring 
the potential difference (∆V) between two pairs 
of potential electrodes, M and N. The current 
electrodes act as sources A and B in this process 
(see Figure 3).

The earth is assumed homogeneous and iso-
tropic, consisting of a single layer with the same 
resistivity value. Nevertheless, this assumption 
must be revised since the earth comprises multiple 
layers with different resistivity values. Therefore, 
the measurable potential difference in the method 
only represents an apparent value of various min-
erals, which results in the apparent resistivity (ρa) 
being calculated by multiplying the geometric fac-
tor by the potential difference (∆V) divided by the 
current (I) (Reynolds, 1997; Lowrie, 2007). Thus, 
all quantities can be measured at the ground surface 
except the resistivity, calculated by Equation (1):

Figure 2.  Geological map of the studied area. The studied site is Qmt unit rock, consisting of tuff, breccia, basaltic lava, and 
pumice (Source: Alzwar et al., 1992, BIG).
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Figure 3. The resistivity measurement employs a standard four-electrode setup comprising two current electrodes, A and B, 
and an additional pair of potential electrodes labeled M and N.

                                                       ........... (1)ρ  = 2π a

ΔV
I {(         )           }1

rAM

1
rMB

(         )           1
rAN

1
rNB

-1

Furthermore, the AGI Earth Imager™ 2D 
software generated the inverse modeling images. 
This modeling software created resistivity models 
by inverting the measured data. Since the site to-
pography is rugged, the resistivity measurements 
were corrected for topographical variations.

Materials

The resistivity values of different subsurface 
materials are generally well-defined, which al-
lows for the identification of various layers and 
structures within the subsurface. In addition, the 
changes in resistivity values across a fault zone 
can be used to estimate the location and extent of 
the fault. The third line (ERT L-3) crosses a hill 
to intercept the aquifer suspected to flow from 
a higher surface. The line is characterized by 
rugged topography, with elevation ranging from 
1,141 m asl. to 1198 m asl. and an average slope 
of 6° to 8°. At 550 m from the first electrode, it 
intersects with ERT L-1 and ERT L-2.

Figure 4 shows the ERT line survey and the 
profile elevation. On May 30th, 2022, the first 
measurement was conducted using the ERT sur-
vey with twenty-eight electrodes to investigate 
the minor buried fault by implementing three 
lines around the suspected area. Each line is 
800 m long and has an electrode spacing of 30 
m. The details of the measurement implementa-

tion are provided in Table 1. Furthermore, rock 
specimens were taken in addition to the ERT 
survey to strengthen the interpretation of geo-
electric resistivity measurements (see Figure 
5), revealing a tuffaceous rock stratum over the 
basalt lava.

Figure 5 shows the rock samples collected 
from the studied area, specifically from the out-
crops at SPC-01. These samples possess sand-
stone, volcanic breccia, basalt lava, and volcanic 
tuff, which overlays the basalt lava marked by a 
red dashed line in the stratigraphic profile. The 
variety of rock types in the samples suggests a dy-
namic geological history involving sedimentary 
and volcanic processes. The presence of volcanic 
tuff above the basalt layer highlights a sequence 
of volcanic events that followed lava solidifica-
tion. This samples collection provides crucial 
data for understanding the geological evolution 
of the studied area.

Furthermore, Figure 6 presents a comprehen-
sive overview of the morphological and geologi-
cal characteristics identified in the studied area. 
It emphasizes critical surface features, including 
tuff outcrops, river channels, springs, sandstone 
formations, and alkaline lava exposures. Tuff out-
crops indicate layers of volcanic ash deposition, 
indicating a significant volcanic history in the 
region. The mapped river channels enhance the 
understanding of the area drainage patterns and 
erosion processes. Water springs located along 
the ERT line imply the existence of groundwa-
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Figure 4. The map depicts the location and orientation of the Electrical Resistivity Tomography lines in the studied area 
(top). The elevation profiles of each ERT line  (A'-A, B'-B, C'-C) include the placement of electrical electrodes (bottom).

ERT Lines Label, Location (coordinates), and Orientation/elevation (m asl.) 
of The First and The Last Electrodes

Label Orientation First electrode (ELE-1) Last electrode (ELE-28)

ERT L-1 Extending at an 
azimuth of 296° ELE-L1-1 785165.65 E, 9210279.52 S 

(UTM) & about 1300 m asl. ELE-L1-28
784461.60 E, 9210617.60 S 
(UTM)
& about 1180 m asl.

ERT L-2
Extends from ELE-1 
L-2 at an azimuth 
of 296°

ELE-L2-1 784043.41 E, 9210852.21 S
& approx. 1220 m asl. ELE-L2-28 784678.84 E, 9210531.51 S 

& around 1130 m asl.

ERL L-3 Intersecting ERT 
L-1 and ERT L-2 ELE-L3-1 783992.00 E, 9210404.00 S

& roughly 1130 m asl. ELE-L3-28 784700.00 E, 9210711.00 S 
& approx.1195 m asl.

Table 1. Information on Deploying the ERT Lines of Resistivity Measurement in the Studied Area (see Figure 4)

No Layer category Resistivity value (Ohm.m) Colour range in modeling
1 Low resistivity layer 18.9 to 40.5 Dark blue to light blue
2 Medium resistivity layer 40.5 to 186.5 Green blue to yellow
3 High resistivity layer >200 Yellow to red

Table 2. Layer Categories of Resistivity Values

ter pathways within the subsurface. Sandstone 
outcrops reveal sedimentary processes that took 
place before the volcanic events. Lastly, the alka-
line lava exposures indicate historical lava flows, 
contributing to the region complex stratigraphy. 
These observations collectively provide essential 
evidence supporting the geological interpretations 
outlined in this study.

Result and Analysis

Figure 7 displays the resistivity distribution 
and topography of each ERT line. Both first 
(ERT L-1) and second (ERT L-2) profiles follow 
a downward slope from 1,297 m asl. to 1,190 m 
asl. with an average slope of approximately 8°. 
Their resistivity depths reach 155 m from the 
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Figure 5.  The rock specimens obtained from the outcrops found on SPC-01 comprise (a) Sandstone, (b) Volcanic breccia, 
(c) Basalt lava, and (d) Volcanic tuff (represented by a red dashed line) that overlays the basalt lava.

Figure 6. An overview of the morphological and geological characteristics observed on the surface in the studied area, including 
tuff outcrops, river flows, springs, sandstone outcrops, and alkaline lava outcrops.

surface and 180 m from the ground surface, re-
spectively. The errors of modeling results of ERT 

L-1 and ERT L-2 are up to 13.23 % and 20.64 %, 
respectively, with a resistivity range of 18.9 to 400 

a b

c d
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Ohm m. The ERT L-3 profile shows a resistivity 
distribution model with an error of 19.49 %.

The ERT L-1 and ERT L-2 profiles show lines 
extending to the northwest and intersecting the 
ERT L-3 profile at the midpoint. Their profiles 
were then combined to obtain a continuous profile, 
which follows the survey design in Figure 6 using 
a roll-along configuration. Thus, the combined 
cross-section between the two has the length 
of about 1,400 m. The same colour scale on all 
profiles provides uniform rock information. The 
colour discontinuity on the profile indicates the 
possible location of the minor fault buried.

Discussion

The resistivity values obtained from all ERT 
line modeling were divided into three categories: 

low, medium, and high resistivity layers, as pre-
sented in Table 2. The low layer is predicted to 
be an aquifer composed of sandy clay containing 
groundwater up to 2 m below the surface. The 
medium resistivity layer likely comprise volcanic 
tuff and sandstone. It is approximately 20 to 60 
m from the surface, because rock resistivity will 
decrease if rock porosity and saturation increase 
(Park et al., 2016). The high resistivity layer is 
found at a depth of approximately 60 m to 155 m 
from the surface, and is believed to be an aquiclude 
incapable of storing or transmitting water.

The concatenated cross-sectional results in 
Figure 8 show that the minor faults may be buried 
at about 520 m from the first electrode (SE side). 
This observation was obtained from a discontinu-
ity pattern of resistivity values in the predicted 
basalt lava layer.  Therefore, a minor fault is 
expected to be buried 160 m below the ground 

Figure 7.  Three ERT profiles from ERT L-1, ERT L-2, and ERT L-3 yielded AGI Earth Imager™ resistivity inversion that 
varied considerably, with measurement errors ranging from 13.2 to 20.6 %.
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surface.  This high resistivity layer is predicted to 
comprise compact basalt lava covered by volcanic 
tuff, as evidenced by basalt lava outcrops found 
on SPC-01 at the surface (see Figures 5 and 8). 
Furthermore, these results are strengthened by the 
geological map, which confirms that ERT L-1 and 
ERT L-3 profiles coincide with a suspected fault 
in the Qmt rock unit area.

Figure 9, a three-dimensional model (visual-
ized from an east ̶ west and a south ̶ north perspec-
tive) was constructed to enhance the interpretation 
based on the intersecting ERT profiles. It demon-

strated excellent data quality, as indicated by the 
well-connected resistivity distribution contours, 
and interpreted a minor buried fault as a weak 
zone beneath the soil. 

Based on the findings (see Figure 10), the 
buried minor fault is thought to have a direction 
from southeast to northwest, with a strike of 
about N 310°E and a dip of 66°. The identified 
rock units are believed to include sandy clay 
in the upper layer, followed by tuff, sandstone, 
and basalt lava in the lower layer. Thus, the in-
terpretation of resistivity geo-electric data can 

Figure 8. After post-processing, an extension to the resistivity profiles of ERT L-1 and ERT L-2 was made. The profile was 
1,400 m long, and reached a depth of approximately 200 m.

Figure 9. Three-dimensional ERT model: (a) An east-west viewpoint, (b) Another from a south ̶ north viewpoint.
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Figure 10. The researched area conceptual model of rock layers is based on the interpretation of resistivity geoelectric data. 
Suspected rock units include sandy clay, tuff layer, sandstone, and basaltic lava. The discontinuity of the basaltic lava layer 
at the bottom is attributed to a minor buried fault.

produce a conceptual model of the rock layers 
in the studied area.

Conclusions

The resistivity measurements obtained from 
ERT provide valuable information about the 
subsurface materials, including the presence of 
fault zones and changes in lithology. This study 
employed Electrical Resistivity Tomography 
(ERT) as an effective method to investigate a 
minor buried fault in the Malabar Mountain. The 
interconnected cross-sectional analysis suggests 
the possible existence of buried minor faults at 
a depth of approximately 160 m, indicated by 
the observed discontinuity between the assumed 
layers of basaltic lava (the resistivity of the high 
layer ranges from 186.5 to 400 Ohm.m). Further-
more, the geological map confirms that ERT L-1 
and ERT L-2 intersect with the alleged fault in 
the Qmt rock unit area. The analysis of the geo-
electrical method points out that the buried minor 
fault may be oriented in a southeast to northwest 
direction, with a strike of approximately N 310°E 
and dipping 66°. The buried minor faults might 
have caused several wells at lower elevations to 
dry, and the groundwater could have infiltrated the 

weak zone, causing drought conditions in certain 
parts of the lower studied area. This discovery 
of buried minor faults aids in the improvement 
and completion of the previously established 
geological map. 
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