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Abstract - A resource assessment of the Ulumbu Geothermal Field, East Nusa Tenggara, Indonesia, is proposed here. 
The fundamental issue of reserve estimation is determining the optimum capacity to be installed (field size) that af-
fects the decision-making in geothermal projects. The reservoir numerical model and heat stored method are the most 
appropriate tools for geothermal resource assessment. Therefore, the hybrid numerical simulation and heat stored 
methods, coupled with the probabilistic approach, are applied to Ulumbu. Based on the calibrated numerical model, 
the estimation of the reservoir is divided into the steam zone and liquid reservoir. The energy reserve of the Ulumbu is 
estimated by Monte Carlo simulation with the results P10-P50-P90 are 71 MWe, 95 MWe, and 127 MWe, respectively.
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Introduction

The Ulumbu geothermal field is located in 
Manggarai Regency, East Nusa Tenggara, Indo-
nesia, as shown in Figure 1. It is owned by P.T. 
PLN (Persero) with a concession area around 10 
km2. The field has been producing electricity from 
four units, having a total capacity of 10 MWe. The 
 Ulumbu power plant plans to increase the electric-
ity production by adding two more units having a 
total capacity of 2×20 MW; then, further assess-
ment of the reservoir needs to be carried out. An 
integrated reservoir study is needed to estimate the 
reservoir power generation capacity, to increase 
the understanding of the reservoir characteristics, 

and to determine an optimum development sce-
nario. The application of a numerical reservoir 
model in planning and managing a geothermal 
field has been a widespread practice as more 
than a hundred geothermal fields that have been 
modelled worldwide (O’Sullivan et al., 2001).

The integrated reservoir studies using res-
ervoir simulation had been carried out by sev-
eral researchers, a greenfield and brownfield of 
geothermal fields. Several geothermal greenfield 
numerical modelling, not yet been developed for 
production, have been carried out, such as Atadei 
(Supijo et al., 2019a, 2019b, 2018; Pratama et al., 
2020; Supijo et al., 2020), Danau Ranau (Afiat et 
al., 2021), Cisolok-Cisukarame (Sumartha et al., 
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2020), Ungaran (Assiddiqy et al., 2021), Songa-
Wayaua (Hasbi et al., 2020), and Arjuno-Welirang 
(Putra et al., 2019). The greenfield numerical 
model provides a piece of useful information for 
consistency with the conceptual model. Reservoir 
numerical simulation, at the exploration state 
with limited data available, is unlikely to give a 
more realistic long-term production than more 
straightforward volumetric methods. However, 
it has a value at that stage, but this method might 
be the best for checking the consistency or update 
the conceptual model.

On the other side, several geothermal fields 
producing brownfield in Indonesia have been 
modelled, such as Sibayak (Atmojo et al., 2001),  
Kamojang (Zuhro, 2004; Suryadarma et al., 
2010), Darajat (Alamsyah et al., 2005; Hoang et 
al., 2005), Lahendong (Koestono et al., 2010), 
Wayang Windu (Mulyadi and Ashat, 2011), 
Dieng (Sirait et al., 2015; Ashat et al., 2019c), 
Awibengkok (Pasikki et al., 2016), Muara Laboh 
(Situmo rang et al., 2016), Sarulla (Marjuwan et 
al., 2016; Nizami et al., 2016), Patuha (Firdaus et 
al., 2016; Ashat et al., 2018; Ashat and Pratama, 
2018; 2019a, 2019b, 2019d; Pratama et al., 
2021), Karaha Telaga Bodas (Prabata et al., 2017, 
2019; Sutopo et al., 2019), Ulumbu (Kurniawan 
et al., 2017, 2018a, 2019), Sorik Marapi (Mul-
yani et al., 2019), Mataloko (Pradhipta et al., 
2019; Jatmiko et al., 2021), Tompaso (Lesmana 

et al., 2019, 2021), Lumut Balai (Hamdani et al., 
2020). Reservoir simulation is the most applica-
ble method for estimating reserves of geothermal 
fields. The output of numerical model could be 
used to estimate the Ulumbu geothermal reserves 
with heat stored method coupled with Monte 
Carlo simulation.

The process of building a numerical reservoir 
model for a project at the early exploitation stage 
is essential, and the estimation of the heat stored 
method could be useful (Sarmiento and Björns-
son, 2007; Sarmiento and Steingrímsson, 2013). 
The numerical reservoir model could be used to 
decide an optimum development scenario for 
the Ulumbu geothermal field (Kurniawan et al., 
2017, 2018a, 2019). Therefore, this study aimed 
to estimate the energy reserve of the Ulumbu 
geothermal field using the heat stored method 
coupled with Monte Carlo simulation based on 
the output from a natural state calibration of the 
Ulumbu numerical model.

Material and Methods

Ulumbu Numerical Model
The Ulumbu conceptual models provide a 

full description of the structure and nature of the 
Ulumbu geothermal system. The models were 
built from integrated multidisciplinary geological, 
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Figure 1. Location of Ulumbu geothermal field in Flores Island.

IJ
OG



Probabilistic Resource Assessment of The Ulumbu Geothermal Field, East Nusa Tenggara, Indonesia (H.B. Pratama et al.)

185

geochemical, geophysical, and well data. Figure 2 
shows the conceptual model of the field by using 
a slice plan NE ̶ SW. It represents the components 
of a geothermal system such as reservoir, heat 
source, caprock, recharge and discharge areas.

The latest model by Kurniawan (Kurniawan et 
al., 2019) was used in this study. The natural state 
model modified the model structure and increased 
the validation accuracy through better well tem-
perature matching and better conceptual model 
representation. In this study, only temperature pro-
files were considered as no actual pressure profiles 
were available. Figure 3 indicates a good matching 
between the model temperature and the actual data.

The iso-temperature profile and steam cap 
zone above the deep liquid reservoir are shown in 
Figures 4 and 5. This reservoir type is similar to 

several types of research in the two-phase geother-
mal field (Pratama and Saptadji, 2016, 2018, 2021; 
Prabata et al., 2019; Hamdani et al., 2020). The 
model temperature distribution and mass vector 
show a good correspondence with the conceptual 
model. The mass vectors also show the location of 
the upflow and outflow zones of the geothermal 
system. Conceptual model and natural state model, 
in terms of mass flow, show a good correlation, 
indicated by the direction of fluid flow and the 
location of upflow and outflow on the model. The 
upflow zone is between the Poco Rii depression 
and Poco Leok, while the outflow zone is towards 
the west. The fluid flow direction from the west 
towards the east reservoir area is indicated as the 
recharged area based on the numerical model. 
Therefore, the result of the Ulumbu numerical 

Figure 2. Conceptual model of the Ulumbu geothermal field (Kurniawan et al., 2019).
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Figure 3. Pressure and temperature matching for ULB-01, ULB-02, and ULB-03 (Kurniawan et al., 2019).
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The estimated geothermal energy reserves were 
carried out using Monte Carlo simulation, an es-
sential tool, with a range of values of the various 
reservoir parameters. This probabilistic approach 
was applied to evaluating reserves that capture 
uncertainty. The defining values of a reservoir 
input parameter, numbers within the distribution 
range, were selected based on the natural state 
model and attracted over a thousand iterations for 
each set of calculations. The heat stored method 
was carried out using a Monte Carlo simulation 
with 60,000 random numbers to generate a value 
of the parameters used in calculations. Generat-
ing random numbers in a computer programme 
is a requirement to using any of the Monte Carlo 
methods. The Ulumbu geothermal field has a steam 
zone and deep liquid reservoir. Then, Sarmiento 
and Steingrímsson (2007, 2013) state that hypo-
thetically, it is wise to calculate the heat component 
from the deep liquid reservoir and the two phases 
(vapour-dominated zone) of the reservoir.

simulation at the natural state model could be used 
to update the conceptual model.

The numerical model and heat stored are the 
most commonly applied methods in geothermal 
resource assessment. The heat stored method is 
considered the most practical approach but with 
uncertainties in the parameter inputs. There is no 
doubt that the reservoir numerical model is the 
best approach in estimating geothermal resources. 
Many researchers combined the natural state 
model with probabilistic heat stored calculation 
(Ashat et al., 2019b; Hasbi et al., 2020; Hidayat 
et al., 2018; Kurniawan et al., 2019; Pratama 
and Saptadji, 2021, 2018; Putra et al., 2019). In 
Indonesia, the numerical model is mandatory to 
estimate the proven reserve based on SNI 6009 
(2017) however, it is unclear how to calculate 
it. Therefore, this paper offers an approach of 
combining the output of numerical simulation at 
natural state model with heat stored method to 
estimate the Ulumbu geothermal reserves.
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Figure 4. Heat-mass flow in the model agrees with the conceptual model of the Ulumbu field (Kurniawan et al., 2019).

Figure 5. Steam flow at Ulumbu Geothermal Field, the cross-section of gas saturation (Kurniawan et al., 2019).
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The parameters used, shown in Table 1, were 
derived from the study of geoscience data, drill-
ing wells, and natural state models that had been 
built. The area was based on high temperature 
from the numerical model; thickness was based 
on the numerical model and ULB-01 well. The 
rock density was based on gravity data and SNI 
6482:2018; the porosity was based on the numeri-
cal model, and SNI 6482:2018; rock heat capacity 
was based on Vosteen and Schellschmidt (2003) 
and SNI. Recovery factor was based on Muffler 
and Cataldi (1978) and SNI 6482:2018; electric 
efficiency was based on Bodvarsson (1974). The 
initial reservoir temperature was based on well 
temperature; the initial water saturation was based 
on a numerical model; the final water saturation 
was based on Ashat et al. (2019b). The economic 
life of the project is 30 years based on SNI 6482 
(2018).

Results

The estimation result of the Ulumbu using 
the heat stored method shows that the cumulative 
distribution used Monte Carlo simulation (Figure 
6) and the probabilistic result of P10-P50-P90 
are shown in Table 2. The probabilistic result of 
P10-P50-P90 in all steam, are 44 MWe, 60 MWe, 
and 81 MWe, respectively. In contrast with the 
probabilistic liquid, the reservoir is, consecutively, 
27 MWe, 35 MWe, and 46 MWe.

The liquid reservoir and steam zone calcula-
tion from the Ulumbu field shows that the steam 
zone is superior to the liquid reservoir. Overall, 
the reserve of the steam zone is almost double 
to the liquid reservoir. The probabilistic result of 
P10-P50-P90 in all steam are 71 MWe, 95 MWe, 
and 127 MWe, respectively. The calculation result 
shows that P50 is 95 MWe, close to the ESDM 
calculation result (2017) of 100 MWe. Because the 
reservoir area uses resistivity survey data (Mag-
netotellurics – MT) and The Ulumbu produced 4 x 
2.5 MWe, calculated reserves fall into the category 
of probable reserves. Similar to SNI Standard, the 
reserve is categorized as probable because of the 

Parameters
Vapor Liquid

Remarks
Min Max Most Min Max Most

Area (km2) 19.8 24.2 22 19.8 24.2 22 Model
Thickness (m) 400 1000 600 400 800 600 Model, ULB-01
Rock Density (kg/m3) 2400 3000 2600 2400 3000 2600 Gravity, SNI
Porosity 0.07 0.1 0.08 0.05 0.08 0.07 Model, SNI
Rock Heat Capacity (kJ/kg) 0.95 1 0.985 0.95 1 0.985 (Vosteen and Schellschmidt, 2003), SNI
Recovery Factor 0.175 0.25 0.213 0.125 0.2 0.175 (Muffler and Cataldi, 1978), SNI
Electric Efficiency 0.11 0.112 0.111 0.105 0.11 0.108 (Bodvarsson, 1974)
Initial Reservoir Temperature (o C) 235 240 237 225 234 230 Well Temperature
Initial Water Saturation 0.3 0.35 0.325 0.65 0.7 0.675 Model
Final Water Saturation 0.05 0 0.3 0.5 0.4 (Ashat et al., 2019b)

Table 1. Input Parameter of Each Zone for Heat Stored Method

Figure 6. Cumulative probability of heat stored method.

Table 2. Heat Stored Calculation Results for Each Zone
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areal extent based on MT and indicative that the 
Ulumbu has high-temperature resources. This area 
is potential for well-targeting.

The heat stored method calculates the recover-
able thermal energy for the specific volume, tem-
perature, and exploitation time of the geothermal 
reservoir. Through the Monte Carlo simulation, the 
probabilistic approach of estimating geothermal 
reserves becomes less demanding. It is generally 
used and has been proven to be practical in esti-
mating geothermal resources and reserves. The 
method is useful in estimating potential resources 

to geothermal prospects during early explora-
tion, where the available data is limited. The total 
theoretical thermal and electrical powers can be 
calculated from the thermal energy stored in rock 
and fluids. However, based on the SNI 6009:2017, 
the proven reserve should be estimated using nu-
merical simulation. Therefore, in this study, the 
parameters used for the heat stored method are 
obtained from reservoir numerical simulations.

The results of sensitivity analysis for the cal-
culation of the steam zone and liquid reservoir are 
shown in Figure 7. The results showing reservoir 

Figure 7. Sensitivity analysis of heat stored method: (a). steam zone and (b). liquid reservoir.

2Area (km )

Thickness (m)

Rock Density
3(kg/m )

Porosity
(fraction)

Recovery Factor
(fraction)

Water
Saturation Final

(fraction)

Water
Saturation
Initial...

MIN (MWe) MAX (MWe) MOST(MWe)

Rock Heat
Capacity
 (kj/kg.C)

Temperature
oInitial ( C)

Temperature
oFinal ( C)

Electric
Efficiency
(fraction)

100

80

60

40

20

0

2Area (km )

Thickness (m)

Rock Density
3(kg/m )

Porosity
(fraction)

Recovery Factor
(fraction)

Water
Saturation Final

(fraction)

Water
Saturation
Initial...

MIN (MWe) MAX (MWe) MOST(MWe)

Rock Heat
Capacity
 (kj/kg.C)

Temperature
oInitial ( C)

Temperature
o

Final ( C)

Electric
Efficiency
(fraction)

100

80

60

20

0

40

a

bIJ
OG



Probabilistic Resource Assessment of The Ulumbu Geothermal Field, East Nusa Tenggara, Indonesia (H.B. Pratama et al.)

189

thickness and recovery factors are the most sen-
sitive parameters for the steam zone and liquid 
reservoirs. Therefore, the determination of these 
parameters must be done carefully so as not to 
produce incorrect calculations.

The thickness is the most sensitive parameter 
in each steam zone and liquid reservoir. The verti-
cal extent of the resource was delineated based 
on the fluid phase in the reservoir. The range of 
thickness in the steam zone is around 400 - 600 
m contrasts with the liquid reservoir around 400  
- 800 m. Nevertheless, both reservoirs have an 
identical, most likely thickness at 600 m. 

Defining the portion of the geothermal energy 
that is practically recoverable at the wellhead 
(surface) is challenging. This factor makes the 
heat stored method be extremely uncertain and in-
accurate. The recovery factor is dependent on the 
permeable reservoir and the heat sweep efficiency 
from these permeable channels. This parameter 
depends on the reservoir thermodynamic and 
hydraulic characteristics, such as reservoir area, 
temperature, permeability, porosity, and recharge.

Conclusions

The combination of reservoir numerical simu-
lation and heat stored method with Monte Carlo 
simulation is suitable for estimating a probabilis-
tic geothermal reserve. The geothermal resource 
assessment of the Ulumbu Geothermal field with 
a steam zone reservoir underlying liquid reservoir 
has been estimated using the combined methods. 
The calculation is divided into the steam zone and 
liquid reservoir with a total capacity of probabi-
listic P10-P50-P90, 71 MWe, 95 MWe, and 127 
MWe, respectively. However, the critical issue of 
the heat stored method is an oversimplification 
of the actual geothermal reservoir. Therefore, to 
address this issue, the latest geothermal resource 
assessment methodology method is Experimental 
Design (ED) and Response Surface Methodology 
(RSM). Dynamic modelling could be applied to 
produce the heat and mass flow from the reser-
voir numerical model. The ED and RSM method 

coupled with numerical reservoir modeling is 
a promising hybrid technique that is effective 
and efficient to be implemented in geothermal 
resource assessment.
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