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Abstract  - The seismicity pattern along the Great Sumatran Fault (GSF) was analyzed during April 2009 - December 
2017 period with magnitude of >3.0 and depth of < 30 km. Of 752  preliminary absolute locations, 695 were success-
fully relocated using double-difference method to provide an improved view of seismicity, sharpening locations and 
interpretations of seismogenic features throughout the region. The relocation results depict a pattern of significant 
increase on small to intermediate earthquakes occurring in a shallow part of northern Sumatra, i.e. the Aceh and 
Seulimeum segments, as well as in central Sumatra, i.e. the Toru and Barumun. This increase was interpreted due to 
indications of creeping that reduce or prevent stress build-up on these segments. Meanwhile, few segments, i.e. the 
Tripa segment in the northern part, then Suliti and Siulak segments in the central part, and Manna segment in the 
southern part of Sumatra show the least activities over the period. These segments were identified as lock asperity, 
which caused accumulating stress that could be released as an earthquake. The behaviour of these locking segments 
can be related to the seismic gap along the GSF which has not experienced major earthquakes (M>7) since 2000, 
making the densely populated area around these segments potentially have a great seismic hazard in the future.  
Keywords: Great Sumatra Fault, hypocentre, relocation, double-difference method
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Introduction

Background
The Great Sumatran Fault (GSF) is well 

known as a highly segmented trench-parallel 
strike-slip fault as the result of oblique subduction 
between Indo-Australian Plate and Eurasian Plate 
(Sieh and Natawidjaja, 2000). The measurement 
of slip rates along the GSF based on the latest 
modeling using a combination of geological and 

geodetic methods carried out by Bradley et al. 
(2017) denotes that the slip rate in the Sumatran 
fault is around 14 mm/year. 

The subduction zone between Indo-Australian 
Plate and Eurasian Plate forms an oblique conver-
gent pattern. The tilt movement is the resultant of 
the two forces between downward movement and 
lateral movement. The downward movement is 
caused by the subduction of the Indo-Australian 
Ocean Plate under the Eurasian Plate. Whereas 
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Figure 1. Historical earthquakes in Sumatra. Yellow star symbols indicate historical GSF earthquakes with M>6. Blue star 
symbols indicate historical megathrust earthquakes with M≥6.5 after 2004. Colour straight lines indicate the GSF segmented 
by geometrical irregularities into nineteen major segments by Sieh and Natawidjaja (2000).

lateral movements are reflected from the patterns 
of shear faults that form a series of structures of 
the right-lateral strike-slip fault on the mainland 
of Sumatra (McCaffrey, 2009). The impact of 
oblique convergent movement produced high 
seismicity along the GSF. Another study by Sieh 
and Natawidjaja (2000) proposed GSF segmented 
by geometrical irregularities into nineteen major 
segments, and few segments have large earth-
quakes occurred near the fault line (Figure 1).

Based on the historical earthquake data, the 
largest earthquake occurred in June 1943. This 
doublet earthquakes have occurred repeatedly on 
Sianok and Sumani segments. Estimated mag-
nitudes on the second event magnitude Ms 7.6 
following the first event of Ms 7.3 (Hurukawa et 
al., 2014). Historical earthquake data recorded the 
doublet earthquake shave also happened several 
times in GSF. First in 1926 with magnitude 6.8 
in the Sumani segment and magnitude 6.5 in 
the Sianok segment. Then in 1943 with M 7.1 
in the Sumani segment and M 7.3 in the Suliti 
segment. The last event was in 2007 with M 6.4 
in the Sumani segment and M 6.3 in the Sianok 
segment (Untung et al., 1985; Natawidjaja and 
Triyoso, 2007;  Nakano et al., 2010; Daryono et 
al., 2012; Hurukawa et al., 2014).

The motion of tectonic plates produces stresses 
on faults which cause earthquakes. It is known 

that the transferred stress between faults plays an 
important role in triggering earthquakes (Nakano 
et al., 2010; Zahradník and Sokos, 2013;  Nissen 
et al., 2016; Bie et al., 2018; Momeni and Tatar, 
2018). Nevertheless, there is still not much infor-
mation about accurate locations due to earthquakes 
in this studied area (Nakano et al., 2010). The 
relocation along the Sumatran fault was previ-
ously done by Nugraha et al. (2018) using seismic 
catalog data by Indonesian Agency for Meteorol-
ogy, Climatology, and Geophysics (BMKG). The 
results were focused on the subduction zone, so 
it did not discuss much about the pattern of seis-
micity behaviour in the Sumatran fault segment. 
The initial hypocentre by automatic picking on 
BMKG catalog had limitations in terms of spatial 
resolution, and accuracy of the hypocentre location 
which still showed the presence of artifacts, where 
some earthquakes were fixed at a depth of 10 km.

In this study, the initial hypocentre was deter-
mined using a nonlinear method and hypocentre 
relocation with a double-difference algorithm by 
utilizing P- and S-phase arrivals from occurrence 
of shallow earthquakes along nineteen segments 
of the GSF to enhance the spatial resolution of 
seismic activity, and get relatively more accurate 
location of earthquake hypocentre distribution. 
Using well-located seismicity distribution, the 
fault continuation can be delineated both laterally 
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and in depth, which also can image a fault line 
covered and hidden by thick sediments. The pur-
pose of this study is to identify relations between 
seismicity through catalog of relatively accurate 
hypocentre relocations with historical major 
earthquake and indication of creeping or locked 
in GSF segments. This study aims to examine the 
seismicity pattern and fault interaction that may 
support seismic hazard mitigation along the GSF.

Material and Methods

The data used in this study is a data waveform 
originating from fifty-three seismometer net-
works scattered throughout Sumatra Island from 
Indonesian Agency for Meteorology, Climatol-
ogy, and Geophysics (BMKG), with a recording 
period from April 2009 to December 2017. Data 
segmentation was then carried out to retrieve 
earthquake events near nineteen segments of GSF 
with criteria including depth of ≤ 30 km, magni-
tude of ≥ M3, and signal recording at a minimum 
of four stations, with clear wave phases and P- and 
S-phase arrivals were manually picked carefully 
using Seisgram2K (Lomax et al., 2009).

First, preliminary absolute earthquake locations 
were calculated using the probabilistic nonlinear 
earthquake location algorithm that implemented 
in NonLinLoc programme developed by Lomax 
et al., 2000; Lomax and Curtis, 2001; Lomax, 
2005; Lomax et al., 2009; Lomax and Savvaidis, 
2021) with seismic velocity model AK135 by 
Kennett et al. (1995). The double-difference rela-
tive relocation algorithm was applied in HypoDD 
programme generated by Waldhauser (2001) to 
refine the locations of the initial earthquakes. The 
double-difference technique leverages the fact 
that if the hypocentral separation between two 
earthquakes is relatively small in comparison to 
the event-station distance and the scale length of 
velocity heterogeneity. Then, the ray paths between 
the source region and a common station are similar 
along almost the entire ray path, and the difference 
in travel times for two events observed at one sta-
tion can be attributed to the spatial offset between 

the events as shown on Figure 2. The HypoDD 
programme double-difference algorithm has been 
repeatedly tested using data from permanent net-
works and aftershock arrays across the world to 
validate its capacity to improve the representation 
of seismicity (Wu et al., 2008; Waldhauser and 
Schaff, 2008; Hauksson et al., 2012; Weller et al., 
2012; Ramdhan et al., 2017; Rosalia et al., 2019).

Figure 2. Schematic diagram of an illustration of the double-
difference relocation algorithm. For two events, i and j, the 
initial locations (open circles), relocations (solid circles), 
and corresponding ray paths to a station k are shown. Thick 
arrows (Δmi and Δmj) indicate the corresponding relocation 
vectors (Adapted from Waldhauser and Ellsworth, 2000).
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Results and Discussions

Phases 4198 P and phases 3979 S which have 
carefully been repicked (see an example manu-
ally picking of  21 January 2013 event in Figure 
3(A), showed connection between event with 
near stations and far stations which recorded in 
Figure 3(B), and a Wadati Diagram was used to 
objectively evaluate the linear connection be-
tween phase data Figure 4(B) to provide quality 
control throughout the selection process; a Vp/Vs 
ratio of 1.7577 was achieved. 752 shallow events 
have successfully been located (depth less than 30 
km) along nineteen segments of Sumatran fault 
with relatively accurate using nonlinier inversion 
method by oct-tree algorithm.

The initial velocity model 1D by AK135 with 
a modified layer depth was used to determine the 
initial locations (Kennett et al., 1995), drawing 
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on earlier studies that had successfully applied 
to the Sumatra regional region, i.e. Engdahl et 
al. (2007) and Pesicek et al. (2010). The initial 
location determination results revealed that Root 
Mean Square (RMS) error was relatively better 
compared to RMS of BMKG catalog, which 
utilized 1D velocity model by IASP91 as shown 
in Figure 5. This result shows the importance of 
the velocity models in minimizing location errors.

As a result, the findings of this initial location 
determination were treated as a dataset of uncor-
rected absolute hypocentre positions, and the 
modified velocity model as inputs for HypoDD. 
The relocation process successfully refines 695 
events from the 767 initial locations used. To en-
sure the relocation results have been carried out 
properly, the residual arrival time P- and S-wave 
was analyzed and compared with the residual 
results of arrival time before being relocated. The 
histograms of residual arrival times before reloca-
tion (Figure 6, left) and after relocation (Figure 6, 
right) for 695 events show that the relocation result 
has statistically improved with residual times, and 
are closer to zero compared to initial locations.

Following Waldhauser and Ellsworth (2000), 
estimating the relative location uncertainties of 
relocated events was evaluated by using bootstrap 
resampling method. This process is repeated a hun-
dred times using 0.1 s standard deviation of pick 

arrival time. The result gives relative horizontal 
(longitude/x and  latitude/y) bootstrap error ellipses 
at the 90% confidence level. Through relocation 
result, events can consistently be relocated by us-
ing eight stations in averages as shown in Figure 7 
b3 with mean location errors of < 10 km as shown 
in Figure 7 b1 and b2. To analyze in more detail 
the relocation results, the relocated events were 
divided and compared with initial BMKG location 
into three regions including northern, central, and 
southern Sumatra. These regions represent the 
density of seismicity distributions along the GSF. 
The horizontal and vertical sections of seismic-
ity map for these regions are shown in Figure 8. 
Based on the distribution of relocated seismicity, 
the northern Sumatra region is relatively more 
active than other regions in Sumatran fault. It is 
assumed that significant increase of seismicity in 
northern Sumatra, precisely near the boundary of 
Seulimeum segment and Aceh segment, is prob-
ably associated with stress changes in these areas. 
If this is connected to co- and post-seismic stress 
perturbations from megathrust earthquakes, Qiu 
and Chan (2019) found from previous megathrust 
earthquakes that stress in most segments of the Su-
matran fault increased (stress changes are high/> 1 
bar), except for the segment close to the Mentawai 
gap and few of southern Sumatra segments, where 
the stress level was only moderately elevated. The 
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Figure 3. (a) Three-component seismogram examples of 21st January 2013 event, recorded at stations LHMI, KCSI, TSI, 
PSI, and TRSI. Red and blue lines indicate the picks of P- and S-wave  arrival times, respectively. (b) Location of earthquake 
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deep after slip following great earthquakes on 
subduction zone further enhanced the stress level 
at the Sumatran Fault in the Aceh segments.

Previous study by Hurukawa et al. (2014) 
identified six earthquakes of M ≥ 6.0 occurred in 
the northern Sumatra (as shown in Figure 1). Two 
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Figure 5. (a) 1D velocity model compared which utilized for initial location estimation (straight lines indicate Vp and dotted 
lines indicate Vs) (b) Histogram root mean square (RMS) error of travel time residuals obtained with IASP91 (Kennet, 
1991) and AK135 (Kennett et al., 1995). 1D velocity model (orange colour indicate IASP91 model and blue colour indicate 
modified AK135 model used in this study).

Figure 6. Histogram of arrival-time residuals before relocation (left part), and after relocation (right part) for 695 events.

earthquakes with Ms 7 in 1936 and mb 6.7 in 1964, 
the 1935 Ms 7 occurred close to the Seulimeum 
segment and Aceh segment, damaged the area 
surrounding the Banda Aceh City located between 
those segments. Relocation results in vertical 
cross-section in northern Sumatra as illustrated 
in Figure 9 show better earthquake clustering and 
several lineations. GPS network observation by 
Ito et al. (2012) indicates shallow aseismic creep 
and deeper locking zone with creeping rate reach-

ing 20 mm/year in this area (Ito et al., 2012; Tong 
et al., 2018). Earthquake activity was speculated 
occurred on the central part of near boundary of 
Seulimeum segment and Aceh segment (dotted 
rectangular/a as shown in Figure 8 b2).

In the central Sumatra region, the relocation 
results show a cluster of earthquake events in the 
branching area between the Toru, Angkola, and 
Barumun segments. A fairly good cluster was 
also formed in the Sianok and Sumani segments 
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(dotted rectangular (c) as shown in Figure 8 b2). 
Cattin et al. (2009) also found the GFS most of 
the events prior to and after 2004 are located 
around Toru, Angkola, and Barumun branching 
area (1.8˚N). Their study also relates an increase 

of Coulomb stress and the particularly geometry of 
the Sumatran fault in this area. This branching area 
between Toru, Angkola, and Barumun segment in  
Sieh and Natawidjaja (2000) was observed as the 
greatest irregularity where the fault splits into two 

Figure 7. (a) Map showing relocation uncertainties of 681 events, ellipse symbol represents the errors from horizontal di-
rection obtained by bootstrap analysis, rotated triangle represents seismic station. (b1) and (b2) represent the longitude and 
latitude errors (km) of relocated events. (b3) Number of stations used when relocating the event.
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Figure 8. Distribution of seismicity in horizontal and vertical section (A) before relocation and (B) after relocation in north-
ern, central, and southern Sumatra. Coloured vertical straight lines indicate GSF segments. Circle indicates earthquakes 
hypocentre after relocation. Light-green rectangulars indicate a presume of seismic gap on (b) Tripa segment, (d) Suliti 
and Siulak segments, and (e) Manna segment. Dotted rectangulars indicate a significant increase in seismicity interpreted 
as creeping on (a) Aceh-Seulimeum segments and (c) Toru-Angkola-Barumun segments. The blue line is Slab 2.0 which 
shows Sumatra subduction (Hayes et al., 2018).  

subparallel strands up to 35 km apart or known as 
‘equatorial bifurcation’. This zone is suspected to 
provide the most stress heterogenity and seismic 

activity along GSF (Genrich et al., 2000; Sahara 
and Widiyantoro, 2019; Sieh and Natawidjaja, 
2000). The ΔCFF >0 was resulted by Cattin et al. 
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(2009) along these two branches, except on the 
southernmost part of the Angkola segment. There-
fore, this cluster activity is assumed experiencing 
an implication of structural irregularity, and release 
of stress as creeping earthquakes which occurred 
as a post-seismic relaxation following the 2004 
megathrust earthquake.

The relocation result in vertical cross-section 
in central Sumatra region as shown in Figure 10 
also shows cluster events that is close to the 1921 
earthquake (M 6.8) located at the northwestern 
end of the Toru segment. The 1982 earthquake (M 
7.5) and the cluster event on Sianok and Sumani 
segments is close to the 2007 doublet earthquakes 
(M 6.4 and M 6.3) (Hurukawa et al., 2014; Na-
kano et al., 2010). Whereas in southern Sumatra, 
Qiu and Chan (2019) found near the 2007 Beng-
kulu rupture, the patch of seismicity rate before 
2004 was low, especially in the northern part. 
There was almost no earthquake activity, while 
seismicity rate in the southern part was moderate. 
Similarly, after the Bengkulu rupture, seismicitiy 

after relocation results show quite good distribu-
tion on the Kumering segment and Semangko 
segment in Sumatran fault, although in some other 
segments in the southern Sumatra, especially on 
Manna segment, the seismic activity is as very 
low as on Tripa segment in the northern Sumatra 
and Suliti and Siulak segments on central Sumatra 
regions [light-green rectangulars (b), (d), and (e) 
in Figure 8 B]. The seismicity rate immediately 
jumps above the background rate, and continue 
to rise following the earthquake. The Sumatran 
fault was also elevated by post-seismic relaxation 
following the 2007 earthquake (Wiseman and 
Burgmann, 2011), but their seismicity status was 
found to show a seismic gap between other stud-
ied areas. Following latest major earthquake in 
this region, this region was interpreted to become 
locked and still accumulated the stress. 

The relocation result along the GSF develop a 
pattern of fault behaviour in the form of creeping 
or locking based on seismic activity indicated by 
various segments in each region. The cause of this 

Figure 9. Map showing seismicity of northern Sumatra with focal mechanism data collected by GCMT (Dziewonski et al., 
1981; Ekström et al., 2012), cross section A – B, C – D showing lineation (black dotted line) interpreted from correlation 
between cluster pattern, focal depth and history of major events. Coloured lines indicate GSF segments and star symbols 
indicate earthquakes of M ≥ 6.5.
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increase in seismic activity may occur due to the 
influence of tectonic movements between plates, 
or it may also be a long series of seismic energy 
release processes from large earthquakes that 
previously occurred along the GSF or originat-
ing from megathrust earthquakes that previously 
occurred. This assumption is supported based on 
previous research by Qiu and Chan (2019) which 
found that an increase in seismicity and an in-
crease in stress levels (> 1 bar) in most segments 
of the Sumatra fault, in the rupture area occurred 
after the megathrust earthquakes of 2004, 2005, 
2007, and 2010. Seismicity continued to accumu-
late over a period of postseismic relaxation time.

 Conclusions

Of 752, 695 shallow events have successfully 
been relocated (depth < 30 km) along nineteen 
segments of along the GSF by using double-
difference method. An overview of increased 
seismicity pattern was obtained as a creeping 
activity formed a fault lineation that correlated 
with relocation results, focal depth, and history 

of major earthquakes in GSF segments, especially 
on Aceh and Seulimeum segments in northern 
Sumatra and on Renun, Angkola, and Barumun 
segments in central Sumatra.

Instead, other segments, such as Tripa, Suliti, 
Siulak, and Manna segments, were actually ex-
perienced a significant decrease in activity. This 
segment was figured around probably locked and 
formed a seismic gap which could be accumulat-
ing the stress from previous major earthquakes 
and tectonic movement, and could have released 
into earthquakes of great magnitude in the future. 
However, further studies are needed to be able to 
estimate the probability of earthquake occurrence 
in all of GSF segments due to the stress feedback 
from the transient postseismic processes have 
not finished yet, and it will continue loading the 
Sumatran fault and the surrounding area in the 
years or decades to come.
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