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Abstract - Mass-transport deposits (MTDs) have been analyzed over an area of 1,500 km2 in the deep-water setting 
of West Africa, focusing on the Early Tertiary sequence using high resolution of 3D seismic data. Observed MTD 
is about 10 km wide and 20 km long, up to 140 m thick, on the high gradient slope of 3.4o, extending from east to 
west. Internal seismic facies of the mass consist of extensional imbrication facies in the upslope area, thrusted fa-
cies downslope area. The MTD likely was triggered by a combination of mechanisms. Uplift in the Tertiary, dated 
at about 30 - 40 Ma, corresponding to the unconformity KS_5 may be the main reason that causes slope failure. 
Besides, possibly releasing gas from the gas hydrate stability zone may contribute to triggering mass-transport 
deposition in the study area.
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Introduction

Mass-transport deposit (MTD) occurrences 
involving large volumes of sediment are known 
across continental slopes worldwide, along ac-
tive and passive margins, and volcanic islands 
(Masson, 1998; Collot et al., 2001; Canals et al., 
2004; Astuti et al., 2019). MTD is being more 
systematically studied than in the past, because 
of hazards of mass failures of the continental 
slope and at deep-water drilling sites, as well 
as their significance in hydrocarbon exploration 
and development (Sutton and Mitchum, 2011). 
It includes a wide range of gravity-induced 
deposits, including slides, slumps, and debrites 
(Moscardelli et al., 2006). MTD processes, how-

ever, are still poorly understood because of their 
unapproachability, lack of samples, and general 
lack of knowledge of their detailed geometries 
and morphologies (Mosher and Campbell, 2011). 
High-quality 3D seismic reflection data, however, 
provide the necessary geometric and geomorpho-
logic information needed for detailed interpreta-
tion of submarine mass movements (Posamentier 
and Kolla, 2003). 

This paper describes a submarine mass-
transport deposit from the western African Slope, 
offshore Cameroon, based on 3D seismic reflec-
tion data (Figure 1). This study will focus on the 
occurrence of MTDs of Early Tertiary age, as well 
as the morphology, internal reflection character, 
and triggering mechanisms of failure.
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Figure 1. Location of the studied area in the water depth ranging from 600 - 1900 m (from internal reports of Sterling 
Energy Company).

Geological setting

The Kribi-Campo Subbasin is located between 
2o20’N and 3o20’N, and extends over 6,150 km2 
offshore and 45 km2 in a triangular onshore area 
(Ntamak-Nida et al., 2010). The studied area is 
part of the offshore Kribi-Campo Subbasin, cover 
an area of 1,500 km2, on deep-water ranging from 
600 - 1900 m of the continental slope. The slope 
gradient varies from 3.4o associated with Kribi 
High in the SE to 0.7o in the deepest area. The seis-
mic data contains a sedimentary section up to 6.5 
km thick, ranging in age from Upper Cretaceous 
to present (Figure 2). This study focused on the 
deep section of Early Tertiary age in the interval 
of 3,500 – 5,000 ms TWT (Figure 3). 

Kribi-Campo Subbasin is one of a series of 
Early to Mid-Cretaceous rift segments that un-
derlie the Atlantic Coast of West Africa (Figure 

1). The evolution of the basin can be divided 
into several phases, including the Albian-Aptian 
break-up unconformity (115 Ma), Santonian 
uplift (85 Ma), and resumed Eocene-Oligocene 
uplift (c. 45 Ma) (Figure 2) (Ntamak-Nida et al., 
2010). During the Early Tertiary, relative sea-
level fall resulted in slumping and collapse of 
shelf-slope sediments and deposition of mounds 
on the Rio-Muni basin floor (Dailly, 2000). The 
Palaeocene is absent in most of the wells on the 
Kribi-Campo shelf (Pauken, 1992). An intra-
Miocene unconformity marks an incision surface, 
with the development of canyons cutting down 
into underlying sediments. It is overlain by a 
Plio-Pleistocene progradational shelf (Dailly, 
2000). The Tertiary sequence comprises a series 
of marine mudstone-dominated sequences with 
interbedded sandstones and limestones (Dailly, 
2000).
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Figure 2. Stratigraphic column of the Cretaceous syn-rift to post-rift sequences based on this data and modified from 
Ntamak-Nida et al. (2010).

Data and Methodology

The studied area is located offshore Cameroon 
in the deep-water setting. The dataset is a 3D seis-
mic volume which was acquired in a northeast-
southwest orientation, covering an area of 1,500 
km2, with a bin spacing of 25 m and a total record 
length of 6.6 sTWT. The interval focused on this 
study is c. 1,000 ms corresponding to the Early 
Tertiary (Palaeocene to Eocene) sequence (Figure 
3). The seismic data are displayed as a zero phase, 
SEG normal polarity, i.e., orange/brown peak 
indicating an increase in acoustic impedance. 

The analysis of MTD was undertaken focus-
ing on the seismic facies and the timing of the 
tectonic events that trigger the MTD. The 3D 
seismic data was interpreted using Schlumberger 
Petrel software. The thickness map of MTD has 
been generated combined with a series of attribute 
maps to visualize the MTD in the map view. 

Results and Discussion

The base of the Tertiary sequence is marked 
by an unconformity KS_5, characterized as high 
amplitude and good continuity. Unconformity 
KS_5 is a major unconformity, marked the signifi-
cant change in seismic facies from low frequency, 
continuous, high amplitude reflections below to 
high frequency, discontinuous, low to high ampli-
tude reflections above. A package of imbricated 
to chaotic reflections is observed near the Kribi 
High, to the southeast of the studied area, with the 
length of c. 20 km and width of 10 km (Figure 3 
and 4). Upslope region of this seismic facies is 
characterized as discontinuous reflection package, 
which is characterized by parallel, gently (1o to 
1.7o) landward (upslope) dipping, reflections, 
separated by offsets of up to 27 m (Figure 4a). 
This is a series of small scale thrust imbricates 
(zone above the marker A) propagating basin-
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ward. The ending of this imbrication reflections 
is clearly observed on the variance attribute map 
(Figure 4b) with a shape contrast from high to 
low variance, approaching an area of c. 10 km in 
length and 6 km wide with a maximum thickness 
of 140 ms (Figure 4c). Downslope region, the 
seismic facies was changed to discontinuous, and 
low-amplitude reflection (zone above the marker 
B) is interpreted fine-grained debris flow deposits, 
which is pinchout and downlap on the KS_5 sur-
face (zone above the marker C, Figure 4d). This 
seismic package is interpreted as mass-transport 
deposit (MTD). The imbricate thrusts are formed 
due to compression at the toe of MTD. The simi-
lar MTD feature has been observed in offshore 
Norway (Bull et al., 2009). These authors have 
identified thrusts by pressure ridges, a surface 
expression of thrusts that are below the resolv-
ing power of data. Mass transport deposit facies 
has also been observed as submarine landslides 
offshore Angola (Gee et al., 2006) and Brunei 
(Gee et al., 2007).

MTDs form when shear stress oriented 
downslope exceeds the shear strength of the 
slope-forming materials (Hampton et al., 1996). 
Therefore, slope failure can be the result of a 
downslope-oriented increase in shear stress, a 
reduction in sediment strength, or a combination 
of both (Lee et al., 1991). Several factors of sea-
level change, gas-hydrate destabilization, and 
rapid sedimentation of shelf-margin deltas can 
combine to cause slope instability. 

In the studied area, there are a number of 
possible factors triggering the MTD. First, the 
third drift stage (Eocene - Pliocene) has been 
linked to late gravity sliding caused by uplift and 
sea-level fall in the Tertiary (Figure 2) (Dailly, 
2000). The uplift and erosional unconformity are 
dated at about 30 - 40 Ma (Ntamak-Nida et al., 
2010), possibly corresponding to unconformity 
KS_5. The development of MTD locally on the 
KS_5, at high gradient slope, close to the Kribi 
High indicated for a period of re-activation of 
Kribi fracture zone (Figure 1) and sea-level fall 
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results in slope instability. Besides, gas-hydrate 
destabilization may also cause slope failure. Dur-
ing this period, the area was in a shallow marine 
environment. It is difficult to predict precisely the 
area that has gas hydrate potential due to the deep 
burial sequences. To do that, there will be a lot of 
assumptions needed to be made that will affect 

the estimation results, such as paleo-temperature, 
seismic velocity, and gas component. According 
to Brownfield and Charpentier (2006), it seems 
that most of the Lower Mundeck source rock 
becomes mature prior to the Senonian uplift due 
to the thick overburden of the Upper Mundeck 
(Figure 2). Thus, the area may have sufficient 
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thermogenic gas/biogenic gas to form gas hydrate 
if it satisfies the gas hydrate stability condition. 
The evidence of gas hydrate occurrence in the 
shallow section has been reported by Le et al. 
(2015) that supports the occurrence of gas hydrate 
in the studied area during the Early Tertiary time. 

Conclusions

Mass-transport deposits have been observed 
in Early Tertiary, high gradient slope, associated 
with the Kribi High to the southeast. The MTD is 
c. 10 km in length and 6 km wide with a maximum 
thickness of 140 m. Internally, it comprises low 
to high amplitude reflections which are upslope 
dipping and abruptly end downslope. The devel-
opment of MTD in the Early Tertiary has been 
linked to a period of slope instability that was 
caused by uplift in the Tertiary, dated at about 
30 - 40 Ma, corresponding to the unconformity 
KS_5. Gas-hydrate destabilization may also cause 
the slope failure as, by this time, the source rock 
may have been matured to generate hydrocarbon 
to supply for the gas hydrate stability zone. Gas 
hydrate may be formed by both thermogenic gas 
and biogenic gas. To have a more precise answer 
to this, more analysis of the paleo-environment 
will need to be addressed.
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