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Abstract - Incomplete well log data are very commonly encountered problems in petroleum exploration activity. The 
development of artificial intelligence technology offers a new possible way to predict the required logs using limited 
information available. Optimizing conventional statistical theory, machine learning is proven to be a reliable tool 
for any prediction task in many fields of study. Regression is one of the basic methods that has rapid development 
and evolved many techniques with different approaches and purposes. In this study, parametric and nonparametric 
regressions {linear regression, Support Vector Machine (SVM), and Gaussian Process Regression (GPR)} are com-
pared to predict the missing log using the available nearby data. Feature selection was done by performing Principal 
Component Analysis (PCA) on predictor variables. Different profile of PCA is observed between Cibulakan and 
Parigi Formations, which is the basis of conducting separate models based on the formation. Among all the selected 
methods, GPR is consistently making slightly better results. The correlation between the predicted and actual poros-
ity of GPR is observed to be up to 0.19 higher compared to the other methods. Similar observation is also found on 
the Root Mean Squared Error (RMSE) value comparison. In practice, the GPR method has an inherent advantage 
compared to other methods, as it provides uncertainty to the prediction based on the standard deviation of each 
estimation result. The standard deviation of the GPR prediction ranges from 0.006 in high confidence cases and up 
to 0.077 where uncertainty is high. The models are considered robust and stable according to the RMSE evaluation 
from cross validation which is consistently giving the value below 0.04. In conclusion, the reliability of regression 
techniques for predicting the missing well log is exposed in this study, which results demonstrate steady and good 
accuracy in every formation which are tested on any well logs.
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Introduction

Background
Ideally, complete wireline log data contain 

resistivity log (deep, medium, and shallow), 
porosity log (density, neutron, and sonic) and 
lithology log (gamma ray and spontaneous 

potential). Sometimes miscellaneous logs such 
as caliper and spectral noise are also available. 
Unfortunately, this is a rare privilege especially 
for older operating fields.

It is not uncommon for some logs to be absent, 
either partially (specific interval) or completely 
unrecorded. This particular problem could ham-
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Figure 1. Northwest Java Basin stratigraphic column (Noble et al., 1997).

per the petrophysicist task in estimating the physi-
cal properties of the rocks. For instance, the lack 
of neutron log of the target interval would disrupt 
the porosity calculation of the reservoir rock.

To overcome this issue, researchers are trying 
to estimate the value of missing logs using various 
methods. For example, Bader et al. (2018) esti-
mates the missing log using statistical approach 
by correlating multiple surrounding well logs 
using local similarity (LSIM). In recent years, 
the development of artificial intelligence (AI) 
technology provides. Advanced machine learn-
ing (ML) technique was used by many studies 
in generating the synthetic well logs (Rolon et 
al., 2009; Parapuram et al., 2015; Salehi et al., 
2017). Lately, the implementation of ML on log 
prediction goes beyond the other log data. Kanfar 
et al. (2020) predicted the real-time well log by 
creating a model from the drilling parameters.

While most of the mentioned papers above ap-
plied neural network techniques on their research, 
and this paper utilized the combination of the 
conventional statistical methods with a simple 
ML approach to determine the missing logs. To be 
precise, the reliability of the estimation result was 
assessed from the regression method using the ex-
isting logs from multiple wells nearby. Principal 
Component Analysis (PCA) was done earlier as 
the exploratory data analysis of the predictor vari-
ables (available logs) to select the features that 
were used later in the regression prediction. This 
paper is intended to provide a straightforward yet 
trustworthy prediction technique. 

Regional Geology and Stratigraphy 
Geologically, this research is situated on the 

Northwest Java Basin. According to Noble et 
al. (1997) (Figure 1), this basin comprises two 
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main half-grabens, Ardjuna Basin, and Jatiba-
rang Basin. The wells used in this research are 
part of Jatibarang/Talang Akar petroleum system 
which is categorized as Ardjuna Assessment Unit 
(Bishop, 2000).

Among many reservoir formations that oc-
curred in this system, the wells cover the Cibu-
lakan Formation and Parigi Formation. The first 
mentioned formation, Cibulakan, was deposited 
in Early to Middle Miocene. In this well, two 
members of this formation are exposed which are 
the  main Cibulakan that consists of interbedded 
shales, sandstones, siltstones, and limestones  
(Butterworth et al., 1995) and pre-Parigi that 
contains localized carbonate, the dolomited 
wackestone to grainstone (Pertamina BPPKA, 
1996). While the second formation, Parigi, com-
prises carbonate platform and regressive clastics 
developing in the late post-rift phase (Doust and 
Noble, 2008).

Methods and Materials

In general, the aim of this research is to predict 
the missing log (neutron log in this case) using 
other well data nearby. In this research, models 
were created for each formation interval. These 
models later tested on a well log called valida-
tion well to check which results that produce the 
highest accuracy. Three regression methods those 
are Gaussian Process Regression (GPR), Support 
Vector Machine (SVM), and Linear Regression 
are the selected approaches performed in this re-
search. Fundamentally, these three methods have 
different characteristics. Linear regression and 
Support Vector Machine (SVM) are parametric 
regression, while Gaussian Process Regression 
(GPR) is nonparametric regression. Parametric 
regression is a regression whose curve pattern 

f(x) is known, while nonparametric regression 
is a regression whose curve pattern f(x) is not 
known beforehand.

Before applying those regression methods, 
distinct features need to be selected for the model 
creation. A proper feature selection is one of the 
deciding factors in precisely estimating the value 
of the missing log, and PCA was executed to get 
the finest possible result. This was also done to 
understand the contribution (variance) of each 
parameter against the variable of the predicted 
log. In this study, all the data processing was done 
in a Python programming environment. To sum-
marize, this workflow below explains the steps 
of this study (Figure 2).

Linear Regression
A simple linear regression model is a model 

with a single regressor x that has a relationship 
with a response y that is a straight line (Douglas 
et al., 2012), as in the Equation 1.

y = β0 + β1x + ε ................................................... (1)

where: 
y is the predicted value, 
β0 is the intercept, 
β1 is the slope, and 
the difference between the observed value of y 
and the straight line (β0 + β1 x) is the error, ε.

This study used more than one predictor 
variable (x), so it uses multiple linear regression 
models as in the Equation 2.

y = β0 + β1x1 + β2x2 + ... βnxn + ε ................. (1)

where: 
x1, x2, and xn are the selected well logs with 
unknown parameters β0, β1, β2, and βn. 

Data 
Conditioning

Feature 
Selection with 

PCA

Training Data 
with LR, SVM,

 and GPR

Blind Well 
Testing 

Cross 
Validation

Result 
Assessment

Figure 2. Research workflow.
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Assuming that one wants to make a 3-dimen-
sional regression model, hence they are supposed 
to use n=2 (x1 and x2) as presented in Figure 3.

Support Vector Machine (SVM)
Kecman (2005) states that the learning 

problem setting for SVMs is as follows: there 
is some unknown and nonlinear dependency 
(mapping, function) y = f(x) between some high-
dimensional input vector x and scalar output y (or 
the vector output y as in the case of multiclass 
SVMs). There is no information about the un-
derlying joint probability functions. Thus, one 
must perform a distribution-free learning. The 
only information available is a training data set 

D = {(xi, yi) ∈ X×Y }, i = [1,...l], where l stands 
for the number of the training data pairs, and is 
therefore equal to the size of the training data set 
D. Often, yi is denoted as di, where d stands for 
a desired (target) value. Hence, SVMs belong to 
the supervised learning techniques.

SVM for regression basically works based on 
a hyperplane and large margin classifier. For the 
reason of visualization, assume that there is a 2 
classifier/predictor as shown in Figure 4.

During the learning stages, our SVM model 
will find parameter w = [w1w2 ... wn]T, is the 
predictor variable from well data, and wi is the 
weight of each variable. The equation d(x,w,b) is 
given as in Equation 3.

Figure 3. (a). Regression plane for the model  E(y) = 50 + 10x1 + 7x2, (b). Contour plot (Douglas et al., 2012).
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                                                           ............. (3)d(x,w,b) = 
 

W
T
 x+b = 

 
Σ

n

     i=1 w  i x  i +b

Gaussian Process Regression
A Gaussian process is a generalization of 

the Gaussian probability distribution; whereas a 
probability distribution describes random vari-
ables which are scalars or vectors (for multivariate 
distributions), a stochastic process governs the 
properties of functions.

Unlike the other supervised machine learning 
method, Gaussian process is a nonparametric 
model. There is no worry whether  it is pos-
sible for the model to fit the data since Gaussian 
Process infers a probability distribution over all 
possible values using Bayesian approach. The 
combination of the prior model and the training 
data leads to a posterior distribution model.

The mean prediction is shown as a solid line 
and four samples from the posterior are shown as 
dashed lines (Figure 5). In both plots, the shaded 
region denotes twice the standard deviation at 
each input value x (Rasmussen and Williams, 
2006). Figure 5 also shows that f(x) is the variable 

that is wanted to be predicted (NPHI), while input 
x are the well predictor variables.

Principal Component Analysis (PCA)
PCA is an unsupervised machine learning pro-

cedure which could find the patterns of variation 
from much information without reference to prior 
knowledge about the data itself. This method al-
lows the dimensionality reduction without losing 
much important information. 

The operation was done by using the linear 
combination of the original dataset and trans-
forming into a new dimensional space using the 
eigenvector of each data, which could act as a 
good summary of the data (Lever, 2017). By this 
advantage,  which parameters (log data) that could 
be left were assessed without reducing the quality 
of the result and possibly increased the accuracy 
in the other ways. 

Eigenvalue and eigenvector is a pair of special 
scalar in a linear equation (i.e. matrix equation). 
In matrix transformation, this information could 
be the guidance to restore the information from 
the original matrix. While the eigenvector keeps 
the direction of the transformation, the eigen-
value indicates the original information that was 
retained.  In this operation (PCA), the direction 
of the new coordinate axis is the eigenvector and 
the variations of each parameter displayed by the 
eigenvalue or the axis, higher eigenvalue indicate 
the higher variation (Wallisch, 2014).

Abdelaziz et al. (2017) illustrate the equation 
of the full component transformation of X as 
below (Figure 6):

Tnxp = Xnxp Wnxp  
................................................. (4)

where T is the score matrix with each column rep-
resenting the value of each principal component at 
(n) observations. This matrix was generated from 
the multiplication of X which is the original data 
set matrix consisting of (p) as each the value of 
variables at (n) observations and W as the weight 
(loading matrix) of the transformation to the new 
dimension.
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Figure 5. (a). Four samples drawn from the prior distribution; 
(b). A situation after two data points have been observed 
(Rasmussen and Williams, 2006).
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In this research, the contribution of the pa-
rameters (log informations) is assessed against 
the target response through the eigenvector of 
each parameter and decided which features are 
used for the regression predictions. This method 
is analogous to the study by Roden et al. (2015) 
for feature selection analysis, where it is inher-
ently assumed that the variation that is contained 
for each feature is directly proportional to the 
feature efficacy.

Grid Search
Grid search is an algorithm that can choose the 

best parameters for a model based on the given 
parameter options. This process can automate 
the “trial and error” method of selecting the best 
parameters in a regression model. Grid search is 
then applied to SVM and GPR methods (Figure 
7), since these regression methods have hyper-
parameters that are hard to optimize manually.

Cross Validation
Cross validation (CV) is a statistical method 

that can be used to evaluate the performance of a 
model or algorithm where data are separated into 
two subsets, i.e. training data and validation data. 
First, merging all the well data is needed (seven 
wells for Cibulakan Formation and five wells for 
Parigi and pre-Parigi Formation). Cross valida-
tion is done by using K-fold CV. K-Fold CV will 
separate the dataset (well data) into K-subset. In 

this study, ten-fold CV was used as shown at the 
illustration Figure 8.

For each of the ten subsets of data, CV will 
use nine folds for training and one fold for test-
ing. This ten-fold CV is then applied to the three 
regression methods used. The purpose of applying 
the CV method is to present the model overfitting 
which is more prone if only one validation set is 
used. After testing is done, the RMSE calculation 
was performed to see the accuracy of the model 
obtained from all of the three regression methods.
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Figure 6. Principal component analysis illustration (Abdelaziz et al., 2017).
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Figure 7. SVM hyperparameter optimization workflow using 
grid search (Syarif et al., 2016).
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Materials
This research used seven well-log dataset 

(Table 1 and see the map at Figure 9 for the 
distribution of the well locations). For the model 
creation, only five wells (1 - 5) were used as the 
training dataset. Well #6 and Well #7 were pre-
pared as the implementation/test dataset of the 
prediction models (Figures 10, 11, and 12). Ten-
fold cross validation (Figure 8) was performed 
to assess the reliability (avoid the possibility of 
overfitting) of the models on the results from the 
prediction of Well #6 and Well #7.

Since the neutron log is the one that is pre-
dicted in this research, the other logs (CALI, 
ILD, MSFL, RHOB, VP, P_IMP) were used as 
the predictor parameters.

Results and Discussion 

Feature Selection
Data normalization was performed to the 

combined training wells to reduce the possibility 
of data redundancy and prevent the anomalous 
information caused by the value range differ-
ence of each log. PCA was performed to all the 
predictor variables on the training wells. This 
process changes the predictor variable to the 
principal component (eigenvector and eigenval-
ue).  Eigenvectors were used as the guidance to 
select a certain feature that was used later in the 
regression prediction. The first two components 
of the PCA, namely PC1 and PC2, are shown in 
Figure 13.

In this study, the eigenvector of PC1 is ana-
lyzed which is the main component, and has a 
very large contribution to the variance of the 

Figure 8. Examples of ten-fold cross validation (Talpur, 
2017).
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Figure 9. Basemap showing distribution of well locations.

Well Remark

Well-1

Well-2

Well-3

Well-4

Well-5 Not used for Parigi and Pre-Parigi Fm.

Well-6

Well-7 Not used for Parigi and Pre-Parigi Fm.

Training well
Testing well

Table 1. Well Data Descriptions
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Figure 10. Preview of the log from Well #6 at interval of Cibulakan Formation.

Figure 11. Preview of the log from Well #6 at interval of Parigi Formation.  

entire dataset (around 80%). The absolute value 
of each PC1 coefficients is shown  on Figure 14.

The PCA eigenvector results from each for-
mation indicates that parameters with higher 
correlation to the prediction target (NPHI log) are 
different. While there are no dominant parameters 

correlated with NPHI log at pre-Parigi and Parigi 
Formations, the result from Cibulakan Formation 
shows four dominant parameters (ILD, VSh, VP, 
and P Imp) which have high correlations with 
NPHI log. Due to this, all the logs were used at 
pre-Parigi and Parigi Formations as the training 
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Figure 12. Preview of the log from Well #6 at the interval of pre-Parigi Formation. 
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Figure 13. Principal components of each formation.
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Figure 14. The absolute eigenvectors from each parameter 
on three different parameters.set and only four logs were used to create the 

model at Cibulakan Formation interval.
Through comparison of the PCA results,  the 

lithology variation is hypothesized, and it is 
highly influencing the eigenvalue of the predictor 
variable on the feature selection. The pre-Parigi 

and Parigi Formations are discovered to have 
more complex lithology composition than the 
Cibulakan Formation  which shows different 
eigenvector results. Due to the variation of eigen-
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vectors from each formation, different models for 
each interval were created to get the best possible 
prediction result.

Prediction Comparison
As mentioned earlier, the predictions were 

done in three sets of regression methods. Each 
of the models from Cibulakan Formation was 
implemented on two test wells (Well #6 and Well 
#7). Comparison of the result from both wells is 
presented at Figures 15, 16, and 17.

Grid search has been carried out to determine 
the most optimum hyperparameters in SVM and 
GPR methods. In this formation, the SVM ap-
proach produces the lowest quality of prediction 
result with correlation value at 0.63 and 0.64 
compared to the linear (0.85 and 0.76) and GPR 
method (0.82 and 0.77). The RMSE of SVM is 
also relatively higher than the other two on both 
wells (see the details at Tables 2 and 3). 

Figures 18 and 19 show the results of the 
three regression methods in Parigi and pre-Parigi 

3300
actual

prediction

Linear Model

3350

D
ep

th

Porosity

3400

3450

3500

3550

3600

3650

0.25                0.30                0.35                0.40                0.45

actual

prediction

Linear Model

Porosity

D
ep

th
3400

3450

3500

3550

3600

0.1                     0.2                      0.3                     0.4                      0.5

3650

3700

3750

Figure 15. Result of linear regressions on Well #6 and Well #7 at Cibulakan Formation.
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Formation. Similar to the results obtained from 
Cibulakan Formation (Figures 15, 16, and 17), 
the results from pre-Parigi and Parigi Formations 
using GPR are slightly better than the other two 
methods, both in the correlation (0.817 and 0.810) 
and RMSE value (0.0017 and 0.0008). 

In general, GPR consistently produces con-
siderably better performance compared to the 
other methods in any formation interval, both 
qualitatively and quantitatively. It is assumed 
that this was caused by the ability of GPR to 
calculate the distribution of each single data for 

the value estimation. Nonparametric character-
istics of GPR also have a big role in adjusting 
to the optimum trend of the target variable, 
since this method does not have an attachment 
to a particular form of function. The complete 
recapitulation of the quantitative comparison of 
each method in every formation is summarized 
in Tables 2 and 3.

Another useful property of the GPR method is 
the intrinsic ability to predict the corresponding 
uncertainties, as can be seen in Figures 20 and 21.

Based on the confidence interval plotting re-
sult, it can be seen that each target variable has its 
own standard deviation. Table 4 shows the result 
of minimum and maximum standard deviations.

From Table 4, it can be seen that there is a dif-
ference between the standard deviation results of 
each formation. The Cibulakan Formation tends 
to have a smaller standard deviation compared to 
Parigi and pre-Parigi Formations. This indicates 
that the uncertainty in the Cibulakan Formation 
is lower than the other formations.

Cross Validation
After getting the correlation and RMSE re-

sults from each method, then the cross validation 
process was executed. Cross validation is per-
formed to validate whether the predicted results 
of the three regression methods vary significantly 
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Figure 17. Result of  Gaussian Process Regression on Well #6 and Well #7 at Cibulakan Formation.

Correlation
Formation GPR SVM Linear

Cibulakan well #6 0.829787 0.63817 0.850902
Cibulakan well #7 0.779752 0.641468 0.764006
Parigi well #6 0.81016 0.807826 0.786406
Pre Parigi well #6 0.817512 0.815208 0.814958

Table 2. Correlation Between the Actual and Predicted Value 
for Each Regression Method in Every Formation

RMSE

Formation GPR SVM Linear
Cibulakan well #6 0.025895 0.036686 0.024804
Cibulakan well #7 0.031178 0.04002 0.032386
Parigi well #6 0.028199 0.028072 0.032635
Pre Parigi well #6 0.04152 0.026366 0.046271

Table 3. RMSE Between the Actual and Predicted Value for 
Each Regression Method in Every Formation
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Figure 18. Result of linear regression, SVM, and GPR at 
interval Parigi Formation on Well #6.

Figure 19. Result of linear regression, SVM, and GPR at 
interval pre-Parigi Formation on Well #6.

or not when applied to different wells. In this case, 
a cross validation of all well data was conducted 

with ten fold validations. Tables 4 and 5 below 
are the complete cross validation recapitulation 
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Cibulakan Formation.
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Figure 21. GPR confidence interval plotting overlayed by actual and prediction porosity in Parigi Formation (left) and pre-
Parigi Formation (right).

of the quantitative comparison of each method 
in every formation.

Comparing the results of RMSE between the 
initial model (Table 3) and cross validation result 

(Table 5), it appears that the two results have 
an identical value. It can be concluded that the 
model is robust for predicting the target variable 
in every well.
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Conclusions

The eigenvector from PCA of the feature pre-
dictor is highly dependent on the lithology varia-
tion in each formation, since the PC1 eigenvector 
value has a significant difference between Cibu-
lakan Formation and Parigi/pre-Parigi Formation. 

Regression methods could be a practical op-
tion in predicting the missing well log issue faced 
in the industry. According to the results of this 
study, high correlation prediction results from two 
test wells (Well #6 and Well #7) were produced by 
implementing these three regression algorithms. 

GPR is consistently producing better results 
compared to the other regression methods. GPR 
also provides the uncertainty of each target vari-
able.

The models created in this study are consider-
ably robust and reliable on predicting the missing 
log at any well. This is also proven after applying 
cross validation technique on the models.
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