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Abstract - Topographic mapping using stereo plotting is not effective, because it takes much time and labour-intensive. 
Thus, this research was conducted to find the effective way to extract building footprint for mapping acceleration from 
LiDAR data. Building extraction method in this process comprises four steps: ground/non-ground filtering, building 
classification, segmentation, and building extraction. Classification of ground and non-ground classes was performed 
using Adaptive-TIN Surface algorithm. Non-ground points from filtering process were classified as building with the 
algorithm based on multiscale local dimensionality to separate points at the maximum separability plane. Segmenta-
tion using segment growing was used to separate each building, so boundary detection could be conducted for each 
segment to create boundary of each building. Lastly, building extraction was conducted through three steps: boundary 
point detection, building delineation, and building regularization. With ten samples and step 0.5, classification resulted 
in quality and miss factor of 0.597 and 0.524, respectively. The quality was improved by segmentation process to 
0.604, while miss factor was getting worse to 0.561. Meanwhile, on the average shape index value from extracted 
building had 0.02 difference, and the number of errors was 30% for the line segment comparison. Regarding positional 
accuracy using centroid accuracy assessment, this method could produce RMSE of 1.169 m.
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Introduction

The availability of high-quality geospatial 
data, including building footprint as part of 
digital topographic map, is necessary for bigger 
purposes, including 3D city models (Sugihara et 
al., 2012; Park and Guldmann, 2019) and spa-
tial planning. Building footprint in topographic 
maps depicts the boundary of building roof with 
specified level of detail. Information about build-
ing footprint is important in spatial planning to 

understand the location of a settlement area or 
identification of building functions on a higher 
scale. 

Traditionally, topographic data production 
uses stereo plotting process utilizing the photo-
grammetry technique. However, manual stereo 
plotting takes much time and labour-intensive, so 
it is not effective to be applied for large scale topo-
graphic mapping in the whole area of Indonesia. 
Due to the high needs for large scale topographic 
maps, acceleration of large-scale mapping must 
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be conducted. Therefore, innovation in a large 
scale mapping method should be discovered.

Automation of map feature extraction is one 
of the solutions for mapping acceleration. The 
automation will reduce the amount of time and 
human resources, so that it will increase the 
speed of topographic map production. One of 
the map features that have been evaluated to be 
extracted in this research is building. It is not easy 
to develop the algorithm for automatic building 
extraction, because most buildings in Indonesia 
are very dense and close each other, and many 
of them are in irregular shapes, making it a more 
challenging research.

Research of automatic building extraction is 
not of something new, many methods have been 
developed effectively and accurately. A recent 
technology is based on deep learning algorithms, 
for example using neural networks and Markov 
Random Fields (MRF) (Davydova et al., 2016), 
end-to-end trainable gated residual refinement net-
work (GRRNet) (Huang et al., 2019), Fully Convo-
lutional Network (Antasari, 2019), Convolutional 
Neural Network (Yang et al., 2018), Deep Convo-
lutional Network (Setiaji and Harintaka, 2019), or 
Deep Fully Convolutional Networks (Persello and 
Stein, 2017). Then, the development of LiDAR 
creates a new approach for automation of building 
extraction, for instance using OBIA (Object Based 
Image Analysis) with the use of class modeling 
methods (Tomljenovic et al., 2016), data fusion 
of point and grid-based features using a graph cut 
algorithm (Du et al., 2017), a novel ordered point-
aided Hough Transform (OHT) (Widyaningrum et 
al., 2019), a modified LEGION segmentation (Liu 
et al., 2012), automatic process with the emphasis 
on top-down approaches (Huang et al., 2013), and 
rule-based segmentation of non-ground LiDAR 
point clouds (Awrangjeb and Fraser, 2013). 

The purpose of this research is to find the 
best and the most effective approach to extract 
building footprint automatically for topographic 
mapping acceleration in Indonesia. It is because 
the most needed in Indonesia is finding a simple 
but effective approach to extract topographic map 
features, since completing topographic map for a 

large country such as Indonesia is still challeng-
ing. This research is expected to improve business 
process of topographic mapping in Indonesia to 
be cheaper, faster, and more effective.

Materials and Methods

Data and Materials 
This research used LiDAR data acquired in 

2016 (for building footprint extraction) and topo-
graphic map of Indonesia at 1:5,000 scale created 
in 2017 (as reference dataset). More specifically, 
the research was conducted at Sayang-sayang Vil-
lage, located in Cakranegara District in Mataram 
City, Lombok Island, West Nusa Tenggara Prov-
ince, Indonesia (Figure 1). This area was chosen 
because it represented various characteristics 
of buildings, containing both dense and sparse 
building groups, so that the analysis could be 
conducted based on the density of the buildings. 
Regarding the specification of the data, the den-
sity of point clouds was 4 ppm (points per m2) or 
higher, meaning that for each square meter of the 
area there were at least four points. This speci-
fication was suitable for Indonesia topographic 
mapping at the scale of 1:5,000.

Methods
Ground/Non-ground Filtering

Ground/non-ground filtering was one of the 
important steps in this research, because it would 
affect building classification result. Ground and 
non-ground classification was not only useful for 
DTM extraction, but also for identifying build-
ing, because it could reduce the number of points 
(Ramiya et al., 2017). In that sense, the next step 
of point cloud classification into vegetation and 
building classes was conducted in non-ground 
points only. Therefore, point cloud separation to 
ground and non-ground classes determined the 
quality of building classification.

Classification of ground and non-ground class-
es was performed using Adaptive-TIN Surfaces 
algorithm in Terrasolid software. It uses densifi-
cation of the TIN, where a point will be added 
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Figure 1. Area of interest, located in Sayang-sayang Village, West Nusa Tenggara Province, Indonesia.

if it meets the calculated threshold parameters, 
namely distances to the facet planes and angles to 
the nodes (Figure 2a), and edge areas are cut off 
if they exceed the threshold (Figure 2b) (Axels-
son, 2000). The inputs such as maximal building 
size, terrain angle, iteration angle, and iteration 
distance were crucial, in which the values used 
were 100 m for maximum building size, 88.0o for 
terrain angle, 5.00o to plane for iteration angle, 
and 1.40 m for iteration distance. The maximum 
building size shows the area that has at least one 
initial ground point, a terrain angle assumes the 
steepest angle between points in generated TIN, 
a terrain angle depends on the terrain condition in 
which a smaller iteration angle is better for a flat 
terrain and vice versa, and the iteration distance is 
the maximum distance between point to triangle 
(Rizaldy and Mayasari, 2016).

Building Roof Classification
Building roof classification used the algorithm 

developed by Brodu and Lague (2012). It was 

based on a multiscale local dimensionality to 
separate points into two classes at the maximum 
separability plane. The classification considered 
how the cloud geometrically looked like at ball 
geometry at a given scale, then the best com-
bination of scales at which dimensionality was 
measured. The diameter of the ball was defined 
as a scale, while point of interest was located at 
the centre, as shown in Figure 3.

To determine whether the cloud appeared lo-
cally at a given scale in 1D, 2D, or 3D, the pro-
portion of variance by the eigen values resulting 
from Principal Component Analysis (PCA) was 
used, with the Equation (1) defined the proportion 
of variance (Brodu and Lague, 2012).

                               ........................................ (1)1

1 2 3

pi λ
λ λ λ

=
+ +  

where if λi, i = 1 … 3 be the eigen values, ordered 
by decreasing magnitude: λ1≥ λ2≥ λ3. The number 
of eigen values was accounted for the total variance 

α

d β

γ

d

d > d  max

TIN surface

a b

Figure 2 . Parameters of TIN densification in Adaptive TIN Model algorithm (Axelsson, 2000). (a). Distances to the faced 
planes and angles to the nodes. (b). Edge areas are cut off.
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in the neighbourhood ball determined whether the 
points were distributed in one, two, or three dimen-
sional around the reference scene point.

The algorithm used a linear Support Vector 
Machines (SVM) created by CANUPO train-
ing plugin in Cloud Compare software. A linear 
classifier proposed one solution in the form of 
hyperplane that best discriminated and separated 
two classes (e.g. vegetation against building). It 
used weight vector (w) and bias (b), in which the 
hyperplane was defined by equation wTX - b = 0. w 
and b were used to project the feature space on the 
hyperplane, then the distance to the hyperplane 
d1 = wTX - b1 was calculated for each point. The 
second distance d2 was obtained by repeating the 
process in order to get the second-best direction 

orthogonal to the first, then both distance d1 and 
d2 were used as coordinates at 2D plane of maxi-
mum separability.

The plane of maximum class separability only 
kept two main components, so in this research, 
point clouds were separated into two categories: 
building and vegetation. To do this classification 
step, the training area was first created that rep-
resented both categories. Then, some parameter 
numbers were decided to create this training 
data, including minimum and maximum scale to 
be the limits of multiscale dimensionality. The 
unit of the scale referred to the unit of the point 
cloud. In this research, the chosen number for 
scales was 2-10, because the building lengths in 
the researched area were considered between 2 
and 10 m, since they were located at a settlement 
area. Another parameter was step, defined as the 
distance unit from the minimum to the maximum 
scales, in order to achieve multiscale features. 
Small step means more features, otherwise, larger 
step means less features. In this research, the 
chosen number for the step was 0.5 m.

Shortly, the whole process for all classifica-
tion steps is explained in Figure 4. It started from 
ground classification and non-ground classifica-
tion, then non-ground points were classified as 
building and vegetation points. All processes 
here were binary classification. The building 
points were then used in the next stage, namely 
segmentation.

Neighbors 
within ball

Scene 
point

Other points 
too far away

Sphere diameter = scale of interest

Figure 3. Neighbourhood ball (Brodu and Lague, 2012).

Airborne LiDAR 
point clouds

Adaptive-TIN 
surfaces algorithm

Ground points

Non-ground 
points

Building 
classification 

using multi-scale 
dimensionality

Building points

Vegetation points

Figure 4. Classification process from unclassified point clouds to classified building points.

NOTE: 
1. “Adaptive-TIN Surfaces algorithm” (in the chart↑) should be “Adaptive-TIN Surface algorithm”.
2. “Building classification using multi-scale dimensionality” should be “...multiscale...”.
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Segmentation
Segmentation in point cloud is used to distin-

guish group of points based on feature similarity. 
In order to improve classification result, Vossel-
man (2013) used segment-based features rather 
than traditional point-based features for point 
based classification. The segment-based features 
led to the more accurate classification result. In 
this research, segmentation was used to separate 
each building, so that boundary detection could 
be conducted per segment to create boundary of 
each building. The data used in this stage was the 
previous classification result, namely classified 
building points.

Segment growing algorithm (Vosselman, 
2013) was chosen for the segmentation process. 
Point Cloud Mapper software was used for the 
implementation of the growing segmentation. In 
this algorithm, the test for accepting neighbour-
ing points as extensions of a segment was based 
on the similarity of feature values and normal 
vectors scaled by the planarity to distinguish 
between surfaces with different orientations 
(Vosselman, 2013). Seed points with similar fea-
ture values would be extended and merged with 
their neighbour points if their values were close 
to the average feature values for each segment. 
The combination with the normal vector direc-
tion scaled by planarity was used to distinguish 
between surfaces with different orientations, in 
which when λ1> λ2>λ3 were the eigen values of 
the co-variance matrix, the planarity could be 
expressed as ( )2 3

2

λ λ
λ
−  (Vosselman, 2013).

Segmentation was also used to remove small 
segments and unsegmented points. Therefore, it 
eliminated building errors in the building extrac-
tion process. Unsegmented points, coloured as 
white points (Figure 5) and did not have segment 
number, were points without sufficient nearby sim-
ilar points to start a new seed (Vosselman, 2013).

Building Footprint Extraction
Building extraction process started from 

boundary detection for each segment to create 
delineation of coarse building footprint from 
those boundary points. After segmented points 

Figure 5. Unsegmented points (coloured as white points) 
around segmented point clouds.

were obtained using segment growing, then 
boundary points of each segment were extracted 
using developed boundary package in MATLAB 
before delineation of coarse building boundaries 
was created from those boundary points (Figures 
6a, 6b, and 6c). The algorithm of boundary point 
detection returned points that represented bound-
ary around the building roof points. Unlike the 
convex hull, the boundary could shrink towards 
the interior of the hull to envelop the points 
(https://www.mathworks.com/help/matlab/ref/
boundary.html). Then, points for each segment 
were connected with lines using Points to Line 
tool, so it produced raw building footprints. 
Lastly, to produce a smooth and sharp building 
footprint, regularization of building boundary was 
conducted using Building Regularization tool that 
applied algorithm developed by Gribov (2015) 
(Figure 6d). The implementation of the boundary 
delineation and building footprint regularization 
was performed in ArcGIS Pro software (https://
www.esri.com/en-us/arcgis/products/arcgis-pro/
resources).

In order to achieve a good geometry of 
building regularization, reconstruction of coarse 
building required the support of 90° and 45°. This 
algorithm was also suitable to arcs, in which the 
arc passing through considered locations differed 
from the segment by the necessity to define the 
radius (Gribov, 2015). Building regularization re-
quired the setting of tolerance parameter that was 
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a b

c d

Figure 6. Boundary points of each segment were extracted using developed boundary package in MATLAB. (a) Segmented 
point cloud from segment growing helped to identify each single building; (b) From segmented point cloud, boundary 
points were created using developed boundary package from MATLAB; (c) Boundary points were used to delineate coarse 
building boundary, so coarse boundaries for each building were created; (d) Regularization process to coarse boundary was 
needed to produce the final building footprint.

set to 1 m. This number was based on experiments 
using several numbers, considering the difference 
between the number of segments from extracted 
and reference segments, so it could be assumed 
that extracted objects had similar level of detail 
to reference objects.

Result

Figure 7 illustrates the result of each process, 
from ground/non-ground classification until build-
ing footprint extraction. It can be seen that each 
process affected the quality of the next process. 
For instance, due to some very close buildings were 
segmented as one segment, in building extraction 
result they became one single building. Thus, to 
produce a good extraction result, the quality of 
each process from the beginning must be ensured.

The comparison between extracted and refer-
ence data (topographic map) is presented in Fig-
ure 8. The green circle shows that the extracted 

buildings are similar to reference data, while the 
yellow one shows that the extracted buildings 
still need improvement. Some errors happened, 
for instance, the very close and dense buildings 
were extracted as one single building (Figures 
8a and 8b). Besides the dense area, another chal-
lenge was vegetation, where the buildings that 
were covered by vegetation had problems in their 
geometric result (Figures 8c and 8d), even not 
extracted at all (Figure 8e).

Discussion

Classification Analysis
The classification result of training data was 

shown in a plane of maximum separability and 
separation line (Figure 9). Balanced accuracy (ba) 
and Fisher Discriminant Ratio (fdr) were used to 
quantify the performance of the classifier, where a 
large ba value indicated a good recognition rate, 
while a large fdr value indicated that classes were 
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a b

c d

e f

Figure 7. The result of each process: (a) Non-ground points; (b) Building points; (c) Segmented points; (d) Building 
boundary points; (e) Coarse building line; (f) Final building footprint.

well separated, and obtained using these equa-
tions (Brodu and Lague, 2012):

ba = ½(av + ab) .............................................. (2)

where:

• v
tva

tv fb
=

+
 

• b
tba

tb fv
=

+
    

• tv, tb, fv, fb = the number of points truly(t) 
/ falsely(f) classified into the vegetation(v)/
building(b) classes.

fdr = (μ2 – μ1)
2 / (v1 + v2) ................................ (3)

where:
μc and vc = the mean and variance of the signed 
distance d for each class c

To test the effect of the number of samples and 
step parameter to ba and fdr results, experiments 
with various parameters were conducted. Several 
numbers of samples were used from 10, 15, 20, 
25, and 30, and also changed the step parameter 
by 0.5 and 1, where the result was shown in Table 
1. It can be seen that the addition of samples and 
changing step parameters does not improve the 
results of ba and fdr too much.
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e

a

c

b

d

Figure 8. Comparison between extracted data and reference data (topographic map at the scale of 1:5,000). (Explanation 
for each figure see on text of Result).
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Besides comparing the ba and fdr values, analysis 
of classification accuracy was conducted using 
matched rate analysis, consisting of complete-
ness, correctness, quality, and miss factor, defined 
by equation (4) - (7) (Zeng et al., 2013). Initially, 
those equations were used to assess extracted 
buildings instead of classified building points, but 
in this research, it was adapted to examine the ac-
curacy of building classification result. Reference 
points here were non-ground point clouds that 
were overlapped with building geometry from 
the topographic map, which were obtained from 
manual stereo plotting. It was assumed that those 
points were the correct building points and there 

was no geometrical offset between point cloud 
and the topographic map.

                                  ................................. (4)TPCompleteness
TP FN

=
+

                                        .................................. (5)TPCorrectness
TP FP

=
+

                                              ............................. (6)TPQuality
TP FN FP

=
+ +

                                   ......................................... (7) FNMiss factor
TP

=

where:
• TP (true positive) = the common points of 

classified points and reference points
• FP (false positive) = the classified points but 

not reference points
• FN (false negative) = the points that belong 

to the reference but not the classified points
• Completeness = the percent of classified points 

being correctly detected with respect to the 
reference data

• Correctness = the percent of correctly detected 
part to the classified points

• Quality = metric that combines the complete-
ness and correctness

• Miss factor = the rate of missed building points

The result of matched rate analysis is shown 
in Table 2. With ten samples and step 0.5, it pro-
duced the highest correctness at once the lowest 
completeness and quality compared to the other 
parameters. The best result was produced using 
twenty-five samples and step 1, with quality of 
0.666 and miss factor of 0.263. However, since 
the purpose of this research is to find the simple 
and effective method for building extraction, the 
least number of samples was chosen.

Segmentation Analysis
Segment growing result showed point clouds 

were segmented to each building, so that seg-
mentation result could be identified as building 
separation. This process was also used to remove 

Figure 9. Classifier definition in the plane of maximum 
separability. Blue: vegetation samples, red: building samples. 
From statistic calculation, the value of ba was 0.916, while 
the value of fdr was 3.811.

Number of 
Samples Step ba fdr

10 0.5 0.916 3.811
1 0.912 3.414

15 0.5 0.926 3.651
1 0.923 3.763

20 0.5 0.918 3.583
1 0.909 3.213

25 0.5 0.92 3.463
1 0.909 3.218

30 0.5 0.916 3.344
1 0.914 3.203

Table 1. Results of ba and fdr Value with Various Numbers 
of Samples and Step Parameters
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Number of Samples Step Completeness Correctness Quality Miss Factor

10 0.5 0.656 0.869 0.597 0.524
1 0.719 0.846 0.635 0.392

15 0.5 0.695 0.849 0.619 0.438
1 0.740 0.831 0.643 0.352

20 0.5 0.787 0.802 0.659 0.270
1 0.792 0.800 0.661 0.263

25 0.5 0.790 0.806 0.664 0.266
1 0.792 0.807 0.666 0.263

30 0.5 0.773 0.822 0.663 0.293
1 0.769 0.826 0.662 0.300

Table 2. Result of Matched Rate Analysis

small segments and unsegmented points to elimi-
nate  small and unidentified objects that classified 
as errors.

Compared to the classification result, segmen-
tation increased the quality of building points 
based on the assessment method in the previous 
chapter. The quality was escalated from 0.597 to 
0.604, while the correctness was improved from 
0.869 to 0.913. Nevertheless, the completeness 
and miss factor became worse, where the com-
pleteness was reduced from 0.656 to 0.641, while 
miss factor was increased from 0.524 to 0.561. It 
was because there were more points eliminated in 
this stage. Therefore, the percentage of missing 
objects was higher.

Building Extraction Analysis
Three methods were used to assess the results 

of geometry of footprint building extraction, which 
were segment of line comparison, shape index sim-
ilarity (Veltkamp and Hagedoorn, 2000; Veltkamp, 
2011b; Kweon et al., 2019), and edge point-corre-
spondence (Ramirez and Ali, 2003; Kweon et al., 

2019). The segment of line comparison was used 
to evaluate the number of sections of every line 
resulted from samples against reference dataset. 
Statistically, both data were calculated to generate 
distinction of the line segments and counted it into 
a percentage which indicated the level of error. The 
matrix of the line segment comparison is shown 
in Table 3. The shape index similarity was used to 
enumerate the shape ratio between two objects. 
This method expressed the ratio of an area to the 
length of the circumference (Veltkamp, 2011a). 
Each sample of extracted building was calculated 
as a polygon, where the shape index was calculated 
between perimeters in giving an internal area of 
a polygon. If the shape index was 1, it meant the 
polygon calculated was circular, while the higher 
number of 1 indicated the bar-shaped of the poly-
gon. If the polygon was square, it had an index of 
approximately 1.13. It is possible to express the 
shape index equation as follows:

2
piDi
Aπ

=  ................................................... (8)

A B C D E
4 4 12 4 6

4 4 4 4 4 4 4 4 8 6 4 4 4 4 4 4 8 6 4 4
F G H I J
9 4 12 8 6

6 4 4 4 6 4 4 4 6 4 4 4 10 6 4 4 6 4 4 4
K L M N O
4 14 4 9 17

4 4 4 4 6 4 4 4 4 4 4 4 18 10 6 4 14 10 8 8
P Q R S T
8 7 4 10 13

13 12 6 4 8 6 6 6 4 4 4 4 4 4 4 4 8 6 4 4

Table 3. Comparison of Segment Number between Samples of Reference Datasets and Building Extraction Data
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where: 
Di  : index
pi : perimeter (m)
A : area (m2)

Table 3 shows the number of line segment in 
each data sample, where it was arranged down-
ward respectively in sample ID, the number of 
segments of reference datasets, and the number 
of segments of extracting data. Each number 
of segments of extracting data is shown as four 
columns as well as the interval of tolerance in 
building regularization processes, which are 1 
m, 1.5 m, 2 m, and 2.5 m consecutively. The 
comparison of extracting data to reference da-
tasets obtained the maximum number of errors 
in each sample data. The error was depicted as 
a percentage which is illustrated in Figure 10a. 
Based on the graph, the maximum error was 
found in sample data N, where it had indefec-
tible error regarding to line segment of building 
extraction. The most suitable interval tolerance 
value in regularization process was 1 m. For all, 
the number of errors on the average was 30% or 
0.3, meaning the line segment of this building 
extraction is acceptable.

The assessment of shape similarity resulted 
in the value of index in every sample. The result 
of shape similarity index is shown in Figure 10b. 
Related to extracted data and reference dataset, 
there was a low difference index mostly. On the 
average, the whole sample had the difference of 
0.02 in the shape index value. Comparing the 

whole data, sample S merely generated the high-
est difference shape index, or quantitatively was 
0.3. Thus, the result of building extraction had a 
nearly similar shape to reference data in particular 
of building edge features.

The last test was positional accuracy using the 
calculation of Root Mean Square Error (RMSE). 
The accuracy was assessed by comparing centroid 
positions between extracted and reference sample 
objects. Centroid was used because Euclidean 
distance between the centres of the mass of an 
extracted object and the reference object could be 
used as another metric to measure the positional 
accuracy other than the corner points of build-
ings (Zeng et al., 2013). From those buildings, 
centroid coordinates were calculated on both data 
as shown in Table 4, RMSE was then obtained 
from Equation (9).

                                      .................................... (9)
2 2

RMSE X Y
n

∆ + ∆
=

where:
n = the number of points.

Time Processing Analysis
These works were conducted using laptop 

with specification of processor Intel(R) Core 
(TM) i7-7500U, RAM memory 8.00 GB, and 
64-bit Operating system. Thus, the result of this 
analysis can be a consideration for practicality 
evaluation using the hardware specification, and 
the process could be faster using higher comput-
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Figure 10. Graphs showing: (a) Maximum error of every extracted data; (b) Shape index similarity difference.
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er specification. Time processing analysis was 
conducted for each step, namely ground/non-
ground classification, building classification, 
segmentation, and building footprint extraction 
for an area of 2.478 km2. Based on the existing 
topographic map, it has 3,637 buildings. The 
result of time processing analysis is presented 
in Table 5.

To assess the effectiveness of this proposed 
method, manual digitization was conducted in 
the same area. The result was manual digitiza-
tion which needs 5 hours and 20 minutes, with 

the output specification for manual digitization 
was similar with the output from automatic ex-
traction (for instance, in a very dense settlement 
area, delineation was conducted in the boundary 
of the settlement area). The time processing 
analysis indicated that the method was almost 
nine times faster than the manual method, and 
although this proposed method was simple, it 
produced good results with high effectiveness. 
The comparison of manual and automatic extrac-
tion for the whole researched area is presented 
in Figure 11.

Building
RBI Centroid Extracted Centroid

∆X ∆Y
X Y X Y

A 405948.563 9052575.401 405948.790 9052574.619 0.226 -0.782
B 403751.825 9052608.894 403751.946 9052609.337 0.120 0.443
C 404762.929 9052628.274 404763.587 9052627.533 0.657 -0.740
D 405676.456 9052661.92 405675.447 9052661.517 -1.009 -0.402
E 404172.293 9052784.286 404172.047 9052785.029 -0.245 0.743
F 403496.562 9052842.961 403495.414 9052844.058 -1.148 1.096
G 403047.675 9052971.569 403047.715 9052972.250 0.040 0.680
H 404773.566 9052991.895 404774.698 9052992.894 1.131 0.998
I 404352.525 9053041.472 404353.329 9053041.220 0.804 -0.251
J 403099.219 9053048.893 403098.927 9053049.127 -0.291 0.233
K 403916.275 9053055.857 403916.374 9053055.938 0.099 0.081
L 403215.258 9053062.684 403214.743 9053060.015 -0.514 -2.669
M 403077.960 9053076.599 403077.712 9053076.649 -0.247 0.049
N 404339.570 9053067.305 404340.526 9053068.846 0.956 1.541
O 403728.329 9053078.913 403728.089 9053077.952 -0.239 -0.961
P 403107.326 9053089.027 403106.505 9053089.452 -0.821 0.424
Q 403892.048 9053111.929 403892.200 9053111.525 0.151 -0.403
R 403455.359 9053116.471 403457.022 9053115.892 1.663 -0.579
S 403058.291 9053112.110 403058.095 9053112.389 -0.195 0.278
T 403300.187 9053175.343 403301.247 9053174.690 1.059 -0.652

RMSE = 1,168

Table 4. Positional Accuracy of Each Building

Process Times Information Software
1. Ground / non-ground classification 1 min 51.32 sec 1.a. Adaptive-TIN Surfaces algorithm Terrasolid
2. Building classification 7 min 20.81 sec 2.a. Training area selection Cloud Compare

0 min 24.54 sec 2.b. Generation of training data Cloud Compare
7 min 57.62 sec 2.c. Implementation to whole area Cloud Compare

3. Segmentation 3 min 33.85 sec 3.a. Processing of segment growing Point Cloud Mapper
4. Building footprint extraction 16 min 40.22 sec 4.a. Boundary detection MATLAB

0 min 31.95 sec 4.b. Building delineation ArcGIS Pro
0 min 43.13 sec 4.c. Building footprint regularization ArcGIS Pro

TOTAL 37 min 12.12 sec

Table 5. Results of Speed Processing Analysis



IJO
G

 Simple But Effective Approach of Building Footprint Extraction in Topographic Mapping Acceleration (D.B. Susetyo et al.)

341

Conclusions

This research aims to support mapping accel-
eration, especially for topographic map produc-
tion. It focused on automatic building extraction 
from LiDAR data using the combination of 
several methods, namely classification, segmenta-
tion, and building footprint extraction.

Classification of ground and non-ground 
classes was performed using Adaptive-TIN Sur-
face algorithm. Building class classification used 
multiscale local dimensionality to separate points 
into two classes at the maximum separability plane. 
Then, segmentation was conducted using segment 
growing algorithm. Building footprint extraction 
comprises three steps: boundary point detection, 
building delineation, and building regularization. 

With ten samples and step 0.5, classification 
resulted in quality and miss factor of 0.597 and 
0.524, respectively. The quality was improved by 
segmentation process to 0.604, while miss factor 
was getting worse to 0.561. Meanwhile, on the 
average shape index value from extracted build-
ing had the difference of 0.02 and the number of 
errors was 30% for the line segment comparison. 
Regarding positional accuracy using centroid 
accuracy assessment, this method could produce 
RMSE of 1.169 m. From those statistical analy-
ses, it can be concluded that this method produced 
acceptable quality for building footprint extrac-
tion, especially in sparse settlement areas.
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