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Abstract - Several researchers through geochemical analysis have proven the presence of gold mineralization in 
Kokap, Kulon Progo,  as a result of hydrothermal alteration. Alteration mapping with optical remote sensing images 
in tropical areas is very difficult due to atmospheric conditions, dense vegetation cover, and rapid weathering. This 
study aims to assess the ability of Landsat 8 images in the mapping of hydrothermal alteration in Kokap, Kulon Progo, 
with the Principles Component Analysis (PCA) method. Three conventional machine learning methods, including 
artificial neural network (ANN), maximum likelihood classification (MLC), and support vector machine (SVM) were 
compared to find an optimal classifier for hydrothermal alteration mapping. The experiment revealed that the MLC 
method offered the highest overall accuracy. Two alteration zones were mapped, i.e. argillic zone and propylitic zone. 
The comparison results showed that the MLC classification of band ratio images of 5:2 and 6:7 yielded a classification 
accuracy of 56.4% and kappa coefficient of 0.36, which was higher than those of other machine learning methods 
and band combinations. The combination of Landsat 8 with DEM succeeded in increasing accuracy to 59.5% with 
kappa coefficient of 0.4.
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Introduction
Background

The utility of remotely sensed data in geologi-
cal applications such as mineral potential and hy-
drothermal alteration mapping has shown a great 
success, especially in arid areas with low vegeta-
tion cover. The Landsat-8 satellite was launched by 
the National Aeronautics and Space Administration 
(NASA) in April 2013 as a part of the Landsat 
Data Continuity Mission (LDCM). It consists of 

two sensors: OLI (Operational and Imager) with 
a spectral range from visible (0.43−0.88 μm) to 
short wave (1.57 - 2.29 μm) and TIRS (Thermal 
Infrared Sensor) with thermal spectral range of 
10.6 - 12.51 μm. Bedell (2001) used remotely 
sensed data, especially the visible band to map 
vegetation and identify iron-oxide minerals, also 
shortwave band to identify carbonate minerals and 
lithological types. Yamaguchi and Naito (2003) 
used the thermal band to identify silicate rocks. 
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Some aspects must be considered due to the 
use of remote sensing data for mineral explora-
tion and hydrothermal mapping. First, the sensor 
facing interference while recording the earth 
surface as the effect from the atmosphere, cloud, 
and vegetation cover. Second, common methods 
such as band ratio and principle component do not 
quantitatively measure the abundance of miner-
als, but only showed the indication or anomalies 
that may reflect the presence of minerals. Hence, 
validation through field survey must be carried 
out. Finally, each location has its own character-
istics, thus a method that succeeds in mapping 
out the mineralized zone in one location may 
probably not be successful when applied to the 
other location. It is important always to support 
the remote sensing analysis with other types of 
data such as geological and structure maps, geo-
chemical, and geophysical data, etc.

Several researchers have proved that potential 
gold mineralization areas could be successfully 
detected as a result from hydrothermal alteration 
through geochemical analysis in Kokap, Kulon 
Progo (Harjanto, 2010; Nugraha, 2015; Sulthoni, 
2017; Pambudi, 2017; and Pramumijoyo, 2017). 
At least, there were three hydrothermal alteration 
zones successfully mapped in the studied area: 
silicification, argillic, and propylitic zones. Each 
of these alteration zones has its own spectral 
signatures and can be identified through a remote 
sensing analysis. The aims of this paper are: (i) to 
perform principle analysis to map hydrothermal 
alteration zones, (ii) to validate the results based 
on field data; and (iii) to find which band com-
bination and machine learning method performs 
best in mapping the distribution of alteration 
based on accuracy.

Geological/Stratigraphical Settings
The studied area is located in the western part 

of Kulon Progo Regency, Yogyakarta Special 
Region, with an area around 80 km2. Bemmelen 
(1949) named the Kulon Progo Mountains as an 
oblong dome because of its elliptical shape mor-
phology. This oblong dome shape was formed due 
to the uplift event composed of Oligo-Miocene 

old andesitic volcanic materials from Gajah, Ijo, 
and Menoreh Volcanoes. Gajah Volcano was 
firstly formed in the centre of Oblong Dome and 
produces basaltic andesite followed by Ijo Volca-
no in the southern part of the dome that produces 
andesite pyroxene and dacite intrusion. Finally, 
Menoreh Volcano formed in the northern part of 
the dome and produce andesite hornblende, da-
cite, and andesite intrusion (Suroso et al., 1986).

According to the Regional Geological Map 
number 1408-2 and 1407-5 from Geological 
Agency of Republic Indonesia (Figure 1), the 
studied area is located in the Oligo-Miocene an-
desite intrusion (a). This intrusion breaks through 
Nanggulan Formation (Teon) and Kebobutak 
Formation (Tmok) (Rahardjo et al., 1995). Some 
geological structures were identified as a result 
of volcanism and secondary processes (Widagdo 
et al., 2016). The hydrothermal fluid carrying 
mineralization was then circulated through this 
geological structure. These may be faults, joints, 
cracks, or fissures or simply boundaries of grains. 
(Pramumijoyo, 2017).

Hydrothermal alteration in the studied area 
has been grouped into three alteration zones with 
different mineral assembly character (Harjanto, 
2010; Pramumijoyo, 2017, and Sulthoni, 2017). 
Silicification zone (highly altered) located in the 
centre of alteration is typically characterized by 
secondary minerals of quartz and illite. Argillic 
zone (medium altered) is typically characterized 
by the presence of illite, montmorillonite, and 
kaolinite. Propylitic alteration, the outermost 
zone formed in the lower temperature, typically 
contains chlorite and epidote as the secondary 
altered mineral.

Methods and Materials

Digital Image Processing
The image used in this study is the Landsat 8 

image (path 120 row 65) recorded on September 
18, 2015 with a 12-bit radiometric resolution. 
The visible near infrared (VNIR) and shortwave 
infrared (SWIR) bands were combined to form 
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seven bands at 30 m spatial resolution. Thermal 
infrared bands (TIR) were not used in this study. 
This scene was geo-referenced in the UTM zone 
49S coordinate system with WGS-84 ellipsoid, 
but has not been systematically radiometric 
corrected. This mean, the pixel value (digital 
number) needs to be calibrated. Furthermore, the 
value of the digital number (DN) was converted 
to the spectral radiance sensor to calibrate the 
sensor based on the coefficient in its metadata 
(Wicaksono and Danoedoro, 2012).

This spectral radiance value was then con-
verted to Top of Atmospheric (TOA) reflectance 
and followed by atmospheric correction using 
FLAASH (Fast Line-of-sight Atmospheric 
Analysis of Hypercubes) method. Atmospheric 
correction aimed to eliminate the influence of ele-
ments and molecules in the atmosphere, resulted 
surface reflectance value (Vermote et al., 2002). 
Masking process was then performed to crop the 
image only at the studied area and eliminate other 

objects such as the sea and clouds, since it would 
interfere with the PC processes. The statistical 
value of the Landsat 8 image after masking pro-
cess can be seen in Table 1.
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Figure 1. Geological map of Kokap and surrounding areas modified from Regional Geological Map created by Geological Agency 
of Republic Indonesia (A). Index map of Yogyakarta Special Region. Studied area (E110,0383°-110.1511° and S7,78103°-
7,8671° ́) is marked with polygon in light green colour (B). Landsat 8 true colour composite image (RGB: bands 4-3-2) (C).

Band Min Max Mean Stdev

Band 1 0.0 0.559 0.027 0.036

Band 2 0.0 0.593 0.029 0.037

Band 3 0.0 0.650 0.042 0.045

Band 4 0.0 0.693 0.038 0.045

Band 5 0.0 0.810 0.163 0.139

Band 6 0.0 0.782 0.109 0.099

Band 7 0.0 0.628 0.058 0.059

Table 1. Landsat 8 Band 1-7 Statistic After Masking (digital 
number is in reflectance)

Remote Sensing for Mineral Identification
The approach used to map hydrothermal 

alterations from satellite imagery in this study is 
to identify the mineral assembly of hydrothermal 
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alteration such as quartz, kaolinite, epidote, illite, 
chlorite, montmorillonite, sericite, and other clay 
minerals. Visible and shortwave band of Landsat 
8 image were considered as bands that can be used 
to distinguish the type of mineral from its spectral 
reflection characteristics or spectral signature. 
Based on this spectral characteristic, an algorithm 
can be arranged to highlight target minerals and 
minimize the spectral response of other objects 
(Figure 2). Some algorithms that are often used 
are band ratio and principle component analysis 
(Abrams et al., 1977; Taranik and Crosta, 1996; 
Carranza, 2002). For example, chlorite has a high 
spectral reflectance on Landsat 8 band 7 and a low 
spectral reflectance on Landsat 8 band 2. One of 
the common problems encountered in the mineral 
mapping in areas with dense vegetation is how to 
distinguish the responses of these two elements. 
Both vegetation and minerals have good response 
in the infrared wavelengths.

Principle Component Analysis (PCA)
PCA is a process of transforming spectral val-

ues on images with the aim of reducing the data 
redundancy. The results of PCA transformation 
called PC bands that contain bands that do not 
correlate one with another. PC1 can contain data 
with the largest percentage variance, PC2 con-
tains the second largest percentage variance etc. 
until the last PC which contain only noise (Murti 

and Wicaksono 2014; Gasmi et al., 2016). The 
input of PCA is the statistical data from an image 
such as mean, standard deviation, variance, co-
variance, and correlation from each band. These 
statistics will then be arranged into a matrix that 
is used to get the eigen vector and eigen values 
to rotate the original data (Murti and Wicaksono, 
2014; Smith, 2005). 

This technique has successfully been applied 
by researchers in various locations to map hydro-
thermal alteration (Davidson et al., 1993; Ruiz-
Armenta and Prol-Ledesma 1998; Souza Filho 
and Drury, 1998; Tangestani and Moore 2002; 
Crosta et al., 2003). Two different input of Land-
sat 8 bands were used as PC input in this study. 
First, a combination of three or four Landsat 8 
bands which has high and low spectral respond 
on target mineral and vegetation (also known as 
PCA or Crósta method). Second, a combination 
of two-band ratio images (also known as direct 
principle component or DPC or software defoliant 
technique). First band ratio image should high-
light the target mineral, and the second band ratio 
should contain information about another object 
that interfering the target mineral (i.e. vegetation) 
(Fraser and Green, 1987; Carranza, 2002). When 
there were only two bands used as input to PC 
processes, the spectral contrast was mapped into 
the second component. By limiting the number 
of PC input, it is expected that the result will be 
easier for visual interpretation. 

Band selection as PC input was based on the 
spectral response of Landsat 8 bands to each tar-
get minerals (Table 2). The matrix used in PC cal-
culations is the covariance matrix. The results of 
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Figure 2. Laboratory reflectance spectra of some important 
alteration minerals (Livo et al., 1993).

Target PC 
combination

DPC 
combination

Illite 3-5-7 5/3; 7/2
Kaolinite + montmorillonite 3-6-7 5/4; 6/7
Epidote 2-6-7 5/2; 6/7
Chlorite 2-3-6 5/3; 6/2
Quartz 2-4-7 3/4; 7/2
Limonitic alteration zone 2-4-5-6 4/2; 5/4
Clay alteration zone 2-5-6-7 5/4; 6/7

Table 2. Landsat 8 Bands Combination for PC
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PCs showed the areas containing targeted mineral 
usually exhibit high eigen vector loading value. 
If the loading of the reflective band is positive in 
sign, the target area is shown by bright pixels. 
If the loading of the reflective band is negative, 
the area is shown by dark pixels. In contrast, if 
the loading of the absorptive band is positive in 
sign, the target area is shown by dark pixels. If 
the loading of the absorptive band is negative, 
the area is shown by bright pixels (Crosta and 
Moore, 1989).

Multispectral Classification
One common way to group pixels or digital 

number from an image with similar characteristic 
is to use the Per-Pixel Analysis (PPA) technique 
or often called Per-Pixel Classification. This 
method assumes that each object on the surface 
of the earth has a different spectral reflectance so 
that it can be grouped based on its spectral value. 
This classification can be divided into supervised 
and unsupervised classifications (Richards, 1999; 
Danoedoro, 2012). This study used the supervised 
classification with three different machine learn-
ing methods, i.e. artificial neural network (ANN), 
maximum likelihood classification (MLC), and 
support vector machine (SVM). A brief explana-
tion of these three algorithms were provided in 
Lehmann and Casella, (1998), Haykin (2004), 
Mondal et al. (2012), Wang et al. (2017), Ge et 
al. (2018), and were not repeated here. 

Confusion matrix (or classification error ma-
trix) was then performed to quantitatively measure 
multispectral classification accuracy. Confusion 
matrix contains statistical information such as 
overall accuracy, kappa analysis, and the Z-statistic 
that useful to find out whether a classification is 
successful or failed. Kappa analysis is a discrete 
multivariate technique used in the accuracy assess-
ment to statistically determine whether one error 
matrix is significantly different from other matri-
ces (Bishop et al., 1975). The minimum overall 
acceptable level of accuracy is 85% (Anderson 
et al., 1976) with kappa values greater than 0.8 
which means having a high level of conformity 
(Congalton and Green, 1999; Carranza, 2002). 

Result

Landsat 8 Principle Component Analysis
Several combinations of PC inputs were car-

ried out to obtain the distribution of the secondary 
altered minerals such as kaolinite, montmorillon-
ite, illite, clay alteration, and limonitic alteration. 
The combination of Landsat 8 bands 3-6-7 was 
used to identify the abundant of kaolinite and 
montmorillonite. Both minerals have a high spec-
tral response on band 3 and band 6, and have low 
reflectance on band 7. The PC results show that 
PC1 has positive loadings for all output bands. 
PC2 has high and opposite eigen vector loadings 
for band 3 (0.84) and band 7 (-0.50). The value of 
this loadings is higher than the value of eigen vec-
tor loadings on PC3 for band 6 (- 0.20) and band 
7 (0.86). Thus, the PC2 was chosen to display 
the abundance of kaolinite and montmorillonite 
minerals containing 0.64% of the total variance 
in the spectral data.

A combination of Landsat 8 bands 3-5-7 was 
used to map illite. Illite has a high spectral re-
sponse in Landsat 8 band 3 and band 5, and has 
a low response on band 7. The PC results show 
that PC1 has positive eigen vector loadings for 
all band. PC2 has high and negative eigen vector 
loadings on band 5 (-0.79) and negative eigen 
vector loading on band 7 (-0.23). PC3 has the 
same positive loadings value for band 3 and band 
5 (0.58), and has negative loadings for band 7 
(-0.57). Illite is explained in PC3 as bright pixel 
which contain 1.34% of the total variance in the 
spectral data.

To target clay alteration, a combination of 
bands 2-5-6-7 is used as an input to the PC. The 
result shows that PC1 has positive loadings for all 
band representing albedo and topographic infor-
mation. PC2 representing the vegetation response 
has a high and negative loading on band 5 (-0.80). 
PC3 has a contrast loading value between VNIR 
and SWIR band, with the value of -0.77 on band 
7 (SWIR) and 0.51 on band 2 (VNIR). PC4 was 
chosen to display the clay alteration, because it 
has a high and opposite eigen vector loading on 
band 6 (-0.54) and band 7 (0.60) in the output PC 
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image. Clay alteration displays in bright pixel 
because of the high positive eigen vector loading 
value from band 7. PC4 contains less than 1% of 
the total variance in the spectral data.

Limonitic alteration was mapped using a 
combination of bands 2-4-5-6 that sensitive to 
map ferric ion elements. The best PC results were 
given by PC3 with the contrast loading value be-
tween band 2 (0.48) and band 4 (-0.78). The nega-
tive loading value from band 4 indicates that the 
abundance of limonitic alteration will be mapped 
as dark pixel. To display limonitic alteration in 
bright pixel, PC3 must be negated. PC3 contains 
0.96% of the total variance in the spectral data.

The selected PC results with loadings in bold 
indicates the target minerals (Table 3). PC images 
show that the abundance of kaolinite and mont-
morillonite (Figure 3a), illite(Figure 3b), clay 
alteration (Figure 3c), and limonitic alteration 
(Figure 3d) is associated with sparse vegetation 
in NDVI images (Figure 3e). On the other hand, 
the known hydrothermal alteration zones carry-
ing mineralization (polygon with magenta lines 
in Figure 3f) are in the densely vegetation area in 
which PC images failed to map this.

Landsat 8 Directed Principal Component 
Analysis

Quartz was mapped using band ratio images 
4:3 (sensitive to vegetation) and band 7:2 (to 
map quart). DPC analysis with band ratio images 
3:4 and 6:2 was used to map montmorillonite 
based on the spectral characteristic of mont-
morillonite (high reflectance in band 6 and low 
reflectance in band 2). Illite has a high spectral 
response on band 7 and low spectral response 
on band 2. The combination of ratio images 5:3 
and 7: 2 was then chosen to map the abundance 
of illite. Chlorite is best mapped with band ratio 
image 6:2, because they have a high spectral 
response on band 6 and a low spectral response 
on band 2. To separate vegetation from chlo-
rite, combination of band ratio image 5:3 was 
selected. Thus, chlorite was mapped with band 
ratio image of 6:2 and 5:3. Epidote was mapped 
using a combination of band ratio 5:2 (good for 
vegetation identification) and band ratio image 
6:7 (best to map epidote).

The results show that all DPC calculations 
have strong similarity based on loadings value 
(both negative value) in DPC1, so that vegeta-

PC1 PC2 PC3 PC4 Alteration minerals
Band 3 0.29 0.84 0.46 -

Kaolinite + montmorillonite
Band 6 0.95 -0.22 -0.20 -
Band 7 0.06 -0.50 0.86 -
Eigen values (%) 98.90 0.64 0.46 -
Band 3 0.59 0.57 0.58 -

Illite
Band 5 0.19 -0.79 0.58 -
Band 7 0.79 0.23 -0.57 -
Eigen values (%) 93.76 4.90 1.34 -
Band 2 0.50 0.48 0.51 0.51

Clay alteration
Band 5 0.52 -0.80 -0.03 0.29
Band 6 0.70 0.27 -0.38 -0.54
Band 7 -0.04 0.23 -0.77 0.60
Eigen values (%) 93.38 4.89 1.66 0.07
Band 2 0.50 0.51 0.48 0.51

Limonitic alteration
Band 4 0.47 0.39 -0.78 -0.11
Band 5 0.56 -0.17 0.36 -0.72
Band 6 0.46 -0.75 -0.16 0.45
Eigen values (%) 93.31 5.50 0.96 0.24

Table 3. Eigenvector Loadings for Landsat 8 PCA Combination
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Figure 3. PCA images show the abundance of kaolinite and montmorillonite (a), illite (b), clay alteration (c) limonitic altera-
tion (d) and NDVI (e). Abundant minerals with confidence threshold 95% are displayed as different colour and draped over 
Landsat 8 band 5 (f). Pixel brightness in mineral images (a-d) indicates the relative abundance of mineral considered. Pixel 
bright in NDVI images (e) indicates densely vegetation. Polygon in magenta lines (f) are known alteration zones mapped 
by Pramumijoyo (2017). The abundance of alteration minerals located outside of known alteration zones.
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tion and target minerals cannot be differentiated. 
DPC2 has opposite loading value sign (positive 
and negative) thus map zones containing target 
minerals. All target minerals in DPC2 will be 
displayed as bright pixels. The DPC2 compo-
nent for each alteration minerals were account 
less than 3% of the total variance in the spectral 
data. Target minerals in the selected DPC are 
characterized by eigen vector loadings in bold 
(Table 4) and mapped as bright pixels in the 
DPC images (Figure 4a-e). DPC image shows 
that the abundance of altered minerals is asso-
ciated with sparse vegetation in NDVI images 

(Figure 4f). DPC seems to be failed to map the 
known alteration zones since it is not overlap-
ping with the abundance of altered minerals 
(bright pixels).

According to PC results (Figures 3 and 4), 
most of the dense vegetation areas were mapped 
as dark pixels in the PC images. This is probably 
because vegetation density interfered spectral 
responses of target mineral, hence only digital 
number from vegetation is processed by PC. It is 
also possible that the presence of target minerals 
is not in a large abundance. The spatial resolution 
used in this study is 30 m. This means, if mineral 
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is present insufficient abundant, PC cannot map 
it. Since PC was failed to map hydrothermal 
alteration in the studied area, other approaches 
with multispectral classification need to be done.

Multispectral Classification
PC images generated from Landsat 8 band was 

then classified into hydrothermal alteration zones 
by ANN, MLC, and SVM classification based on 

DPC1 DPC2 Alteration minerals
Band 3 : Band 4 -0.42 -0.91

QuartzBand 7 : Band 2 -0.91 0.42
Eigen values (%) 97.02 2.98
Band 3 : Band 4 -0.23 -0.97

MontmorilloniteBand 6 : Band 2 -0.97 0.23
Eigen values (%) 99.15 0.85
Band 5 : Band 3 -0.90 -0.44

IlliteBand 7 : Band 2 -0.44 0.90
Eigen values (%) 97.67 2.33
Band 5 : Band 3 -0.70 -0.71

ChloriteBand 6 : Band 2 -0.71 0.70
Eigen values (%) 98.36 1.64
Band 5 : Band 2 -0.98 -0.21

EpidoteBand 6 : Band 7 -0.21 0.98
Eigen values (%) 99.10 0.90

Table 4. Eigenvector Loadings for Landsat 8 DPC Combination

Figure 4. Abundant mineral images for quartz (a), montmorillonite (b), epidote (c), illite (d), and chlorite (e) produced us-
ing DPC of Landsat 8 bands. Pixel brightness in mineral images (a-e) indicates relative abundance of mineral considered. 
Pixel bright in NDVI images (f) indicates densely vegetation. Polygon in yellow lines are known alteration zones mapped 
by Pramumijoyo (2017).
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the primary observation data and secondary data 
collections (Harjanto, 2010; Sulthoni, 2017; and 

Pramumijoyo, 2017). These data (Figure 5a) were 
divided into two sets of pixels used for supervised 

Figure 5. Distribution of thin section location (diamond), XRD locations (circle), observation point (black dot), training 
pixels (green square), and testing pixels (pink square) in the studied area (a). Thin section analysis from sample 012 showed 
an altered rock. It is originally an igneous rock with porphyritic texture. Minerals consist of carbonate/Cb (40%), second-
ary quartz/Qz (10%), clay minerals/Cm (15%), chlorite/Chl (30%), and opaque minerals/Opx (5%) indicated as propylitic 
alteration (b). Some alteration minerals detected from sample 020 (c) and 039 (d) by XRD analysis include quartz, illite, 
kaolinite, and montmorillonite. This location is experienced silicification (sample 020) and argillic (sample 039) alteration.

a

c

b

d



IJO
G

Indonesian Journal on Geoscience, Vol. 9 No. 1 April 2022: 45-60

54    

classification: (a) training pixels (classification 
sample) and (b) testing pixels (reference sample). 
The selected observation sites obtained from each 
set were collected and subjected to X-ray diffrac-
tion (XRD) analysis (Figure 5b) and observations 
of thin sections under a microscope (Figure 5c). 
Some minerals such as quartz, kaolinite, illite, 
and montmorillonite were present (Table 5). 
Alteration zones were identified as silicification, 
argillic, and propylitic based on the mineral as-
semblies. Although three types of alteration zones 
have been identified, only two alteration zones 
can be mapped in this study because of Landsat 
8 spatial resolution limitation. These units are, 
respectively, the argillic and propylitic zones. 
Silicification was excluded from the computa-
tion because of its low abundant and not being 
captured by Landsat 8 image. Training and testing 
pixels also contain information about the water 
body and unaltered area.

The supervised classification was performed 
to map the hydrothermal alteration zone based 
on PC images and sample data. The classification 
accuracies and kappa coefficients of hydrothermal 
alteration mapping results of Landsat 8 using dif-
ferent machine learning methods are displayed in 
Table 6. The experiment revealed that the MLC 
method offered the highest overall accuracy com-
pared to ANN and SVM methods.

Highest classification result showed by the 
MLC method with an input of Landsat 8 image 
ratios of 5:2 and 6:7. This combination yielded 
overall a classification accuracy of 56.64%, kappa 
coefficient of 0.36 and Z-statistic value of 17.93 
(Figure 6a). Z-statistic value is exceeding the 

critical value at 95% confidence level, implies 
that this classification is better than random 
classification. ALOS Palsar DEM was then used 
together with PC images to improve the accu-
racy of hydrothermal alteration classification. 
DEM value which lay from 32 m to 622 m was 
stretched to 0 - 1 scale, similar to the ranges of 
another images. This combination succeeded in 
increasing the overall accuracy to 59.5% with a 
kappa coefficient of 0.4 and Z-statistic value of 
20.35. Notice that the argillic zones decrease, 
followed by the increasing of unaltered zones 
(Figure 6b). The best Landsat 8 band combina-
tion for multispectral classification is marked in 
bold text in Table 6. 

Pairwise comparison (Table 6) is used to 
compare the error matrices, two at a time, to de-
termine if they are significantly different. It shows 
that these two matrices (both before and after the 
use of ALOS Palsar DEM) are not significantly 
different. Notice the pairwise comparison value 
is commonly less than the critical value (at 95% 
confidence level, the critical value would be 1.96). 
This is not surprising, because the differences 
between overall accuracies and the kappa coef-
ficients before and after DEM are not significantly 
different, respectively.

Comparison hydrothermal alteration zone 
mapping between multispectral classification 
and the known hydrothermal alteration zones 
are presented in Figure 6c and d. These known 
alteration zones were mapped by Pramumijoyo 
(2017) and Harjanto (2010) with field observation 
followed by geochemistry analysis. Basically, it is 
a comparison between geochemistry analysis and 

Sample Number Analysis Altered minerals Altered Zone

008; 011; 015 XRD
Quartz
Illite

Silicification

020; 039 XRD
Illite
Montmorillonite
Kaolinite

Argillic

006; 012; 021; 025 Thin Section Chlorite, Carbonate Propylitic

Table 5. Rock Samples Representing Altered Minerals
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Table 6. Accuracy Assessment of Landsat 8 Multispectral Classification

Method Band combination
Before ALOS Palsar DEM After ALOS Palsar DEM Pairwise
Overall 

accuracy Kappa Z Overall 
accuracy Kappa Z comparison

MLC

PCA 3-5-7 51.57% 0.28 13.86 54.37% 0.32 16.11 1.54

PCA 3-6-7 51.41% 0.28 13.83 55.09% 0.33 16.68 1.98

PCA 2-5-6-7 54.55% 0.32 16.39 57.58% 0.37 18.70 1.62

PCA 2-4-5-6 52.61% 0.29 14.88 57.34% 0.37 18.49 2.52

DPC b3/b4-b7/b2 54.63% 0.33 16.50 57.10% 0.36 18.53 1.37

DPC b3/b4-b6/b2 53.26% 0.31 15.42 54.85% 0.33 16.86 1.51

DPC b5/b3-b7/b2 56.15% 0.35 17.73 58.94% 0.39 19.92 1.85

DPC b5/b3-b6/b2 54.87% 0.33 16.62 58.22% 0.38 19.35 1.61

DPC b5/b2-b6/b7 56.64% 0.36 17.93 59.50% 0.40 20.35 1.50

DPC b5/b4-b6/b7 53.10% 0.30 15.33 53.97% 0.32 16.11 1.67

DPC b4/b2-b5/b4 55.67% 0.34 17.21 58.62% 0.39 19.72 1.54

ANN

PCA 3-5-7 46.77% 0.20 8.59 54.55% 0.19 6.94 0.04

PCA 3-6-7 46.06% 0.15 6.21 57.88% 0.26 9.27 2.93

PCA 2-5-6-7 50.09% 0.29 13.83 56.71% 0.35 10.69 1.67

PCA 2-4-5-6 48.08% 0.23 10.24 57.39% 0.29 10.38 1.68

DPC b3/b4-b7/b2 43.64% 0.11 4.47 51.21% 0.31 3.02 0.50

DPC b3/b4-b6/b2 45.45% 0.19 8.70 51.92% 0.24 9.97 1.50

DPC b5/b3-b7/b2 51.68% 0.29 10.90 58.91% 0.36 14.25 2.03

DPC b5/b3-b6/b2 46.67% 0.20 8.61 54.24% 0.25 9.91 1.65

DPC b5/b2-b6/b7 50.40% 0.25 10.84 55.66% 0.28 10.98 0.86

DPC b5/b4-b6/b7 51.92% 0.21 8.39 56.77% 0.25 9.09 0.95

DPC b4/b2-b5/b4 48.18% 0.21 9.14 52.83% 0.24 9.50 0.80

SVM

PCA 3-5-7 53.03% 0.13 4.26 56.26% 0.33 9.54 3.24

PCA 3-6-7 53.55% 0.20 7.15 55.96% 0.30 9.59 1.33

PCA 2-5-6-7 54.45% 0.24 8.81 55.56% 0.27 9.32 0.27

PCA 2-4-5-6 54.69% 0.26 9.70 56.17% 0.26 9.92 0.07

DPC b3/b4-b7/b2 51.72% 0.10 3.33 55.56% 0.23 8.70 3.40

DPC b3/b4-b6/b2 52.12% 0.12 4.05 55.76% 0.25 9.60 3.43

DPC b5/b3-b7/b2 54.75% 0.22 7.92 56.78% 0.30 11.30 2.09

DPC b5/b3-b6/b2 54.37% 0.26 9.31 56.89% 0.32 12.26 1.62

DPC b5/b2-b6/b7 55.07% 0.29 11.33 58.01% 0.35 13.72 1.73

DPC b5/b4-b6/b7 54.88% 0.26 10.74 56.98% 0.29 11.11 0.16

DPC b4/b2-b5/b4 53.33% 0.19 6.83 57.58% 0.33 10.65 2.49
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remote sensed method. Known alteration zones 
by Pramumijoyo (2017) were delineated into 
eleven hydrothermal alteration zone boundaries 
that consisted of seven propylitic zones and four 
argillic zones (Figure 6C). The result showed 
that multispectral classification tends to succeed 
to map hydrothermal alteration in zones of Pro-
pylitic 1, Propylitic 3, Propylitic 4, Propylitic 5, 

Argillic 1 and Argillic 4, and tend to be failed in 
zones of Propylitic 2, Propylitic 6, Propylitic 7, 
Argillic 2, and Argillic 3. Overall accuracy from 
this extent is about 50%, close to the overall ac-
curacy for the whole studied area. Comparison 
between hydrothermal alteration classification 
and known alteration zones by Harjanto (2010) 
also showed poor agreement. Harjanto (2010) 

Figure 6. Hydrothermal alteration classification map from ratio images of 5:2 and 6:7 before combination with ALOS Palsar 
DEM (a) and after combination with ALOS Palsar DEM (b). DEM succeed in decreasing the argillic zones and increasing 
unaltered zones proven by the increasing value of overall accuracy and KHAT statistic which has higher agreement. Com-
parison of classified hydrothermal alteration zone derived from Landsat 8 image and field observation done by Pramumijoyo 
(2017) (c) and Harjanto (2010) (d) showed poor agreement for both argillic and propylitic zones. Some traditional mining 
location were also given in map to provide more information related to gold mineralization, respectively.
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divided the hydrothermal alteration as phyllic and 
propylitic zones according to its characterized 
mineral, while this research grouped the hydro-
thermal alteration as argillic and propylitic zones. 
Notice the location of phyllic zone mapped by 
Harjanto (2010) was overlapped with the argillic 
zone mapped by image classification (Figure 6d).

 
Discussion

In general, hydrothermal alteration mapping in 
this study is unsuccessful due to the value of over-
all accuracy and kappa coefficient that below the 
acceptance standard. This poor and unacceptable 
classification results occur because of the misclas-
sification between argillic and propylitic zones. It 
is caused by some aspects, i.e. densely vegetation 
and spatial and spectral resolution of Landsat 8 
image. More than two decades researchers agreed 
that mapping hydrothermal alteration zone in the 
dense vegetation using optical remote sensed data 
is indeed difficult since the vegetation digital 
number interfered mineral digital number. How-
ever, the DPC is proven more successful in the 
mineral detection mapping, compared to the PCA 
in this studied area.

Another factor that becomes very critical 
aspect is the spatial and spectral resolution of 
Landsat 8 data. Landsat 8 has 30 m spatial resolu-
tion which is categorized as medium resolution 
satellite data. This means, one-pixel Landsat 8 
data, which is similar to 30 m x 30 m area, prob-
ably contain many objects on the earth surface. 
It is due to the digital number in one pixel of 
Landsat 8 image is not a purely digital number 
of one object entirely, but contains the digital 
number of different materials. The multispectral 
classification with Landsat 8 image only succeeds 
if the mapping target is in widely abundant, more 
than 30 m x 30 m. From spectral resolution point 
of view, Landsat 8 only has two SWIR bands 
which lay from 1.57 to 1.65 μm and from 2.11 
to 2.29 μm. This spectral resolution availability 
makes Landsat 8 has limitation in the mineral and 
other geological object mapping. As mentioned in 

the previous chapter, the best band combination 
to map mineral, lithology, and other geological 
aspects is in the SWIR region. If SWIR band is 
available in many band ranges (for instance six 
bands in ASTER images), then many combina-
tions of PC images can be created that may help 
in mineral detection and mapping.

However, despite the multispectral classifica-
tion result is unacceptable, this study provides 
information about detailed hydrothermal altera-
tion mapping accuracy that can be achieved us-
ing Landsat 8 image and DEM, especially in the 
dense vegetation cover. In the future, this method 
needs to be improved to increase the accuracy. 
It is true that remote sensing at high spatial and 
spectral resolution is essential, but the method 
that can highlight minerals in the dense vegetation 
is more important. From the exploration point 
of view, the utilization of Landsat 8 images in 
the mapping of hydrothermal alteration is very 
worthwhile since it is low-cost processing and 
promising result.

Conclusions

In this work, the potentials of principal com-
ponent analysis (PCA) have been studied for 
hydrothermal alteration mapping using Landsat 
8 images, especially the VNIR and SWIR bands. 
In the first place, image pre-processing including 
systematic radiometric correction and masking 
has been applied on seven Landsat 8 bands. In 
the second place, PCA is conducted to map the 
hydrothermal alteration with two different band 
combinations as input (also called PC and DPC). 
The analysis of PC images showed that the dense 
vegetation cover in the studied area obstructed the 
sensor penetration to the soil (or ground). It affects 
the unsuccessful result of mineral and hydrother-
mal alteration mapping. In the third place, field 
observation and geochemistry analysis are con-
ducted to map the known hydrothermal alteration 
zones. The data will be used as training and test 
sample in multispectral classification processes. 
Finally, the multispectral classification with three 
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conventional machine learning methods: ANN, 
MLC, and SVM are conducted to determine the 
hydrothermal alteration zones using PC images 
and training and test data sample. The best overall 
accuracy is given by the MLC method using a 
combination of Landsat 8 images ratio of 5:2 and 
6:7 with an accuracy of 56.64%, kappa coefficient 
of 0.36 and Z-statistic of 17.93. The combination 
of DEM with PC images increases the overall 
accuracy to 59.5% with kappa coefficient of 0.4 
and Z-statistic of 20.35.
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