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Abstract - The main purpose of this paper is to compare the performance of bivariate statistical models i.e. Frequency 
Ratio, Weight of Evidence, and Information Value for landslide susceptibility assessment. These models were applied in 
Cianjur Regency, West Java Province (Indonesia), in order to map the landslide susceptibility and to rate the importance 
of landslide causal factors. In the first stage, a landslide inventory map and the input layers of the landslide conditioning 
factors were prepared in the Geographic Information System (GIS) supported by field investigations and remote sensing 
data. The 298 landslides were randomly divided into two groups of modeling/training data (70%) and validation/test 
data sets (30%). The landslide conditioning factors considered for the studied area were slope angle, elevation, slope 
aspect, lithological unit, and land use. Subsequently, the thematic data layers of conditioning factors were integrated 
by frequency ratio (FR), weight of evidence (WofeE), and information value (IV). Model performance was tested with 
receiver operator characteristic analysis. The validation findings revealed that the three models showed promising results 
since the models gave good accuracy values. The success rates of FR, WofE, and IV models were 0.920, 0.926, and 
0.930, while the prediction rates of the three models were 0.913, 0.912, and 0.895, respectively. However, the FR model 
was proved to be relatively superior in estimating landslide susceptibility throughout the studied area.
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Introduction

According to Landslide Inventory Database 
of Indonesia, from 2011 to 2015, almost 40% of 
landslides in Indonesia occur in West Java Prov-
ince. Cianjur Regency with its prominent factors 
of landslide, highly weathered material (lithol-
ogy), and the steep morphology is one of hotspots 
for landslide in West Java (Arifianti and Agustin, 

2017). The accelerated population growth towards 
the landslide-prone areas caused the increasing 
of casualties by human-induced landslide hazard 
each year. A significant effort to reduce the number 
of losses was then carried out through landslide di-
saster mitigation. One of its activities is to conduct 
Landslide Susceptibility Assessment (LSA) as the 
basis of Landslide Susceptibility Map. LSA plays 
a significant part of landslide disaster mitigation, 
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and has received more attention with the highest 
number of publications in international journals 
(Gokceoglu and Sezer, 2009).

Many studies have been carried out to assess 
landslide susceptibility, with increasing applica-
tion of GIS using different models. Numerous 
methods have been used for landslide suscep-
tibility assessment and mapping, which can be 
classified into two categories (i) qualitative and 
(ii) quantitative methods. Qualitative method is 
based on field observations and prior knowledge 
of experts in identifying judgment rules or assign 
weighted values for conditioning factor maps 
and which overlay them to produce a landslide 
susceptibility map, such as analytical hierarchy 
process (Ghosh, 2011; Kayastha et al. 2012; 
Mondal and Maiti, 2012). The quantitative meth-
od primarily refers to several statistical analyses, 
which can be categorized into bivariate statistical 
and multivariate analysis. This study was only 
using bivariate statistical analysis such as fre-
quency ratio (Lee and Pradhan, 2006; Vijith and 
Madhu, 2007; Constantin et al. 2011; Mezughi et 
al. 2011; Regmi et al. 2014), information value 
model (Yin and Yan, 1988; Lin and Tung 2004; 
Sarkar et al. 2008; Conforti et al. 2011; Wang et 

al. 2014; Zhu et al. 2014), and weight of evidence 
model (Poli and Sterlacchini, 2007;  Dahal et al. 
2008; Sharma and Kumar, 2008; Kayastha et al. 
2012; Chen and Li, 2014; Teerarungsigul et al. 
2015). Geomatics by taking advantage of modern 
tools, such as Geographic Information System 
(GIS) and Remote Sensing (RS) provide a perfect 
opportunity for using, validating, and comparing 
different methods to produce a landslide suscep-
tibility map (Vakhshoori and Zare, 2016). Some 
studies have applied and compared two or more 
methods to the same region (Pradhan and Lee, 
2010a; Ercanoğlu and Temiz, 2011; Yalcin et al., 
2011; Regmi et al., 2014; Vakhshoori and Zare, 
2016; Akıncı et al. 2017; Chen et al. 2019).

Studied Area
The area under investigation is located in Cian-

jur Regency between 106°46’56”and 107° 29' 23” 
E latitudes and 6° 33’ 14” and 7° 26’ 49” S longi-
tudes (WGS84 UTM 48 S), covering about 3,730 
km2 area (Figure 1). The altitude of the region 
ranges from 0 to 2,961 m above the mean sea level. 

Based on its physiography, West Java Province 
is divided into four zones, viz; Jakarta Coastal 
Plain, Bogor, Bandung or Central Depression 

Figure 1. Location of the studied area in West Java Province and the location of landslides.
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Zone, and West Java Southern Mountain Zone 
(Van Bemmelen, 1949). Cianjur area is situated 
in Bandung Zone with mainly morphological fea-
tures of steep hills, and the predominant lithology 
is Quaternary volcanic products.

Methods and Materials

The landslide sampled as a homogen geo-
referenced point (Poli and Sterlacchini, 2007; 
Neuhäuser et al., 2011; Ozdemir, 2011; Tien Bui 
et al., 2012; Xu et al., 2014). An approach called 
seed cell was used to indicate the occurrence or 
non-occurrence of landslides. Seed cell is a neigh-
borhood analysis (spatial analysis tool) to select 
landslide pixels within a buffer zone along the 
crown and flanks. It is a method to describe a pre-
failure conditions, the undestroyed morphological 
conditions before the landslides occurred (Süzen 
and Doyuran, 2004; Nefeslioglu et al., 2008; Bai 
et al., 2010; Dou et al., 2015; Hussin et al., 2015).

The total of 298 landslide points in Cianjur 
area were compiled and mapped into the landslide 
inventory map. The landslide points as the seed 
cells were used to build the models. The points 
were randomly divided into 196 points (70%) as 
a training dataset for building process model. The 
other 89 points (30%) as a test/validation dataset 
were not used in building process model, but were 
used for validation purposes.

In this study, conditions considered as the 
primary factors were selected in the occurrence 
of a landslide in the studied area. There were 
the set of five landslide-related factors which 
were used and defined as conditioning factors. 
These conditioning factors are slope angle, slope 
aspect, elevation, lithological unit, and land use 
(Table 1). The factors were converted to raster 
maps of grid size of 15 x 15 m with a spatial 
resolution of 15 x 15 m. The relevant data and 
its analysis for this study were collected and 
processed in a GIS-environment using ArcGis 
10.6 programmes.

In this study, Frequency Ratio, Weight of Evi-
dence, and Information Value models were applied 

on landslide susceptibility assessment to generate 
Landslide Susceptibility Maps (LSMs) of the 
studied area using the five landslide conditioning 
factors. All LSMs were classified into four land-
slide susceptibility zones based on the landslide 
distribution percentage of the total populated as 
very low (0% - 5%), low (5% - 10%), moderate 
(10% - 75%), and high (> 75%) (SNI, 2016).

Frequency Ratio (FR)
The FR is one of probability models which is 

based on observed spatial relationships between 
landslide distribution and each conditioning fac-
tor related to landslides (Pradhan and Lee, 2010a, 
2010b; Choi et al., 2012; Mohammady et al., 
2012; Park et al., 2013; Pardeshi et al., 2013). FR 
is the ratio of landslides (the probability of an oc-
currence and a nonoccurrence) in a desired class 
(given attributes) as a percentage of all landslides 
(%Ld) to the area of the class as a percentage of 
the entire map (%Cd):

( ) ( )% / %d d dFR L C=  .................................. (1)

Where:
FRd is the FR weight of the desired class. 

The landslide susceptibility index (LSI) for 
each pixel or each factor ratio (Lee and Min 2001) 
is the summation of total overlapped pixels. It is 
formulated as:

1

LSI  
n

FRd

d=

= å  .............................................. (2)

Weight of Evidence (WofE)
The theory of evidence (Weight of Evidence) 

is a log-linear version on the theorem of Bayes 

Category Factors Data Type Scale/
resolution

Topographic map Slope angle Grid 15 x 15 m
Slope aspect
Elevation

Geological map Lithology Polygon 1 : 50.000

Land Use Map Land Use Polygon 1 : 50.000

Table 1. Details of Data Used in the Study
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used to calculate probability based on the concept 
of prior (P) and posterior probability (Agterberg 
et al., 1993; Elmoulat et al., 2015). This approach 
is based on the information obtained from the in-
terrelation between landslide conditioning factors 
and the landslide distribution (Barbieri and Cam-
buli, 2009; Pardeshi et al., 2013). The landslide 
conditioning factors are the input parameters for 
the WofE approach and to provide the information 
which may control the occurrence of areas prone 
to landslides (Arifianti and Agustin, 2017). The 
WofE calculates the spatial relationship between 
the conditioning factors  with the distribution of 
landslides (VM), in the form of positive (W+) and 
negative weights (W-). These positive and negative 
weights are calculated from the ratios of the natural 
logarithms (Bonham-Carter, 1994; Elmoulat et al., 
2015), as below:

{ }

{ }
/

ln
/

P VP VM
W

P VP VM

+ =                                         ................................. (3)

{ }
{ }

/
ln

/

P VP VM
W

P VP VM

- =  ................................... (4)

The contrast of the weight (C) is added to 
define how significant the overall spatial asso-
ciation between the landslide conditioning factors 
and the landslide distribution (Dahal et al., 2008, 
Neuhäuser et al., 2011). The contrast value is cal-
culated as the difference of positive and negative 
weights (Ozdemir, 2011):

C W W+ -= -  ................................................. (5)

Information Value Model (IVM) 
The IVM is a statistical approach that has the 

advantage of assessing landslide susceptibility in 
an objective way. The IVM is used to calculate the 
weight for each class of factor layer by rationing 
landslide density of each class to the landslide 
density of the total area. In general, the landslides 
will occur in the future that has the same condition 
as the past landslides (Lee and Pradhan, 2006). 

The IVM model is used to evaluate the spatial re-
lationship between the conditioning factor classes 
and the probability of landslide occurrence. The 
higher value of IVM corresponds to the stronger 
relationship between the probability of landslide 
occurrence and the conditioning factor class. The 
IV model can be calculated as follows (Yin and 
Yan, 1988; Zhu et al., 2004; Wang et al., 2014):

2log i i
i

S A
I

S A
=

 ............................................ (6)

where: 
Si is the number of landslides containing factor class (i), 
Ai is the area of factor class (i), 
S is total number of landslides, and 
A is the total area of the entire study.

Validation of Landslide Susceptibility Models
The validation of LSMs based on statistical 

methods reveals the reliability of the modelling 
processes. It is to compare the accuracy of dif-
ferent models and the choice of their parameter 
variables. The ‘Area Under Curve’ (AUC) of 
the ‘Receiver Operating Characteristics’ (ROC) 
method was performed for the validation. The suc-
cess rate curve used the training dataset (70% of 
the whole set) to determine how well the resultant 
maps had classified the areas of existing landslides 
(Chung and Fabbri, 1999; Chen et al., 2017). The 
prediction rate curve using the validation dataset 
(30% of the whole set) can explain how well the 
models and conditioning factors predict the future 
landslides (Chung and Fabbri, 2003; Pradhan 
and Lee, 2010a). The model accuracy ratings are 
usually given as 0.9 - 1.0 = excellent, 0.8 - 0.9 = 
good, 0.7 - 0.8 = acceptable, 0.6 - 0.7 = poor, and 
0.5 - 0.6 = failed (Yilmaz, 2009). 

Results and Discussion

Spatial Relationship between Conditioning 
Factors and Landslides

The conditioning factors classified into 
several classes and weights were assigned to 



IJO
G

Comparative Study among Bivariate Statistical Models in Landslide Susceptibility Map (Y. Arifianti et al. )

55

them for FR, WofE, and IV methods as shown 
in Figure 2. The spatial relationship between the 

conditioning factors and landslides is presented 
in Table 2. 

Figure 2. Landslide contributing-factor layers produced for the studied area: (a) slope angle, (b) slope aspect, (c) elevation, 
(d) lithological unit, and (e) land use.
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Table 2. Spatial Relationship between Each Conditioning Factor and the Landslides for the FR, WofE, and IV Models

Conditioning Factor Area Total 
(pixel)

Landslide 
points (n) FR WofE IV

Slope angle (0)
0 – 2 11225 4 309 -1207 -1174
2 – 5 19816 6 262 -1412 -1337
5 – 8 21774 20 796 -251 -227
8 – 18 61431 60 847 -243 -165
18 – 24 29537 45 1321 351 278
24 – 33 19021 39 1778 681 575
> 33       7184 22 2655 1055 976

Slope aspect
Flat 4941 2 351 -1064 -1046
North 10996 19 1498 431 404
Northeast 18552 37 1729 632 547
East 19719 28 1231 231 208
Southeast 25710 31 1045 45 44
South 23396 10 370 -1086 -992
Southwest 19135 17 770 -295 -260
West 19963 15 651 -478 -428
Northwest 18320 20 946 -67 -54
North 9256 17 1592 491 465

Elevation (m)
0-500 83104 47 490 -1224 -712
500-1000 54708 121 1918 1098 651
1000-1500 28107 26 802 -378 -220
1500-2000 3396 2 510 -798 -671
2000-2500 451 0 0 -5407 -17975
2500-3000 222 0 0 -5406 -18684

Lithology
Limestone member 2458 0 0 -5302 -16279
Black sandstone, tuffaceous sandstone, siltstone 16049 7 378 -1030 -972
Claystone, siltstone, sandstone, tuffaceous sandstone, tuff 3093 1 280 -1276 -1271
Loose materials, blocks, boulder, gravel from sand, clay 3519 1 246 -1405 -1400
Andesite basalt intrusive 257 2 6749 1916 1909
Limestone 308 0 0 -5289 -18356
Andesite lava 239 0 0 -5289 -18610
Hornblende andesite Intrusive 93 2 18651 2947 2925
Breccia, tuffaceous sandstone, calcareous sandstone 227 2 7641 2041 2033
Old volcanic deposits: Breccia, lava 4098 22 4655 1628 1538
Mount Gede Volcanic Slide; basalt 1194 1 726 -323 -319
Andesite lava 1200 3 2168 777 773
Old volcanic lava deposit 594 6 8760 2198 2170
tuffaceous breccia, lava, sandstone, conglomerate 934 1 928 -77 -74
Lava, Beser sand 130 0 0 -5288 -19219
Breccia, lava, Beser sand 74 0 0 -5288 -19782
Old volcanic deposits: breccia, lava 436 3 5967 1796 1786
Alluvial fan: breccia, lava, lahar 1043 0 0 -5294 -17137
Old volcanic lava deposit 402 1 2157 766 768
Intrusive: vitrophyre, porphyry, dolerite 603 0 0 -5291 -17685
Sandstone 728 1 1191 171 175
Claystone 872 2 1989 687 687
Pyroclastic, lahar 339 0 0 -5290 -18260
Breccia andesite, Tuffaceous breccia 208 0 0 -5289 -18749
Brownish sandstone, Tuffaceous sandstone, andesite  7118 1 121 -2111 -2105
Pyroxene andesite 556 1 1559 441 444
Lahar deposits; breccia, tuf andesite 557 2 3114 1138 1135
Alluvial fan: breccia, lava, lahar 184 1 4713 1550 1550
Old Volcanic Sediment of Pasir Menteng: Clay, marl, quartz sandstone 1208 12 8615 2209 2153
Alluvial fan: breccia, lava, lahar 5003 1 173 -1757 -1752
pyroclastic, lahar 790 1 1097 89 93
Breccia 523 0 0 -5291 -17827
Quartz sandstone 983 5 4411 1500 1484
Breccia, Mount Manengge lava 719 1 1206 183 187
Quater limestone 1580 0 0 -5297 -16721
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The spatial relationship between landslide 
occurrence and its conditioning factors using 
the three models indicates a relative similar 
susceptibility of each class. The most suscep-
tible classes of the slope angle are 7° - 18°, 

18° - 24°, and 24° - 33°. The models show that 
the landslide probability increases with the 
slope angle. This defined as a strong correla-
tion between the slope angle and the landslide 
occurrence.

Sandstone, siltstone 1399 8 4959 1631 1601
Mount Manengge lava 18 0 0 -5288 -21196
Breccia, lava, lahar 3881 2 446 -816 -805
Breccia, lava, Beser sand 468 0 0 -5290 -17938
loose material, clay, sand, boulder, gravel and the mix 1151 3 2260 819 815
Breccia, lava, lahar 319 0 0 -5290 -18321
Marl, quartz sandstone 1178 0 0 -5295 -17015
Loose material, clay, sand, gravel, blocks 2659 3 978 -25 -21
Basalt 9 0 0 -5288 -21889
Pyroclastic, lahar 1500 6 3469 1261 1243
Cirata Lake 8 0 0 -5288 -22007
Breccia, lava, lahar 3423 0 0 -5308 -15948
Mount Pangrango Volcanic deposits 135 0 0 -5288 -19181
Breccia, lava 357 0 0 -5290 -18209
Mount Gede lava 290 0 0 -5289 -18417
Mount Gede pyroclastic deposits 14567 10 595 -556 -518
Breccia, Mount Limo lava 1356 5 3197 1175 1162
Claystone and silstone 603 3 4314 1470 1462
Mount Patuha breccia 5715 3 455 -803 -786
Breccia, Mount Balukbuk lava 723 1 1199 178 181
Breccia, lava, pyroclastic, lahar 494 2 3511 1258 1255
Andesite breccia, tuffaceous sandstone, tuff, lapilli, conglomerate 13756 3 189 -1717 -1665
Old terrace deposits 1541 0 0 -5297 -16746
Brownish sandstone, Tuffaceous sandstone, andesite 5918 7 1025 22 25
Claystone 8243 12 1262 242 233
Andesite breccia 5325 4 651 -441 -428
Claystone Beser Formation 500 0 0 -5291 -17872
Old volcanic sediment of Pasir Menteng: breccia, lava, tuff, conglomerate 1853 21 9828 2389 2285
Sandstone 972 0 0 -5293 -17207
Mount Kendeng lahar and lava 7254 0 0 -5331 -15197
Breccia, lava, lahar 4924 5 880 -133 -127
Breccia, lava, lahar 4932 5 879 -135 -128
Mount Patuha lava 1218 2 1424 351 353
Black sandstone 789 0 0 -5292 -17416
Breccia, lava, lahar 2305 0 0 -5301 -16344
Tuffaceous breccia, crystal tuff 6717 2 258 -1374 -1353
Pyroxene andesite 5169 9 1510 423 412

Land Use
Sea water 16 0 -5298 0 -21314
Freshwater 879 0 -5303 0 -17308
Shrubs 24350 53 780 1887 635
Building 46 0 -5298 0 -20258
Forest 23426 22 -247 814 -205
Garden/agriculture land 44747 51 -29 988 -11
Sand land 3 0 -5298 0 -22988
Sand beach 2 0 -5298 0 -23393
Settlement 9986 14 194 1215 195
Swamp 13 0 -5298 0 -21522
Grass 653 1 270 1328 283
Irrigated rice fields 14456 8 -790 479 -734
Rain-fed rice fields 18052 25 192 1201 183
Rocky ground 10 0 -5298 0 -21784
Fields 33349 22 -667 572 -558

Conditioning Factor Area Total 
(pixel)

Landslide 
points (n) FR WofE IV

Table 2. continued...
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In the case of slope aspect and elevation fac-
tors, the models depicted the highest susceptible 
classes is the northeast facing slope with the 
elevation of 500 - 1,000 m a.s.l. The frequency 
of landslides is relatively lower on the south di-
rection, with the exception in the flat areas. This 
means the two factors have less correlation with 
the landslide occurrence and elevation than the 
slope angle.

The result from lithology factor indicates that 
the most susceptible classes were (1) breccia, 
lava, tuff, and conglomerate from old volcanic 
sediments of Pasir Menteng, (2) clay, marl, and 
quartz sandstone from Rajamandala Formation, 
(3) breccia and lava from old volcanic deposits, 

and (4) old volcanic lava deposits. These four 
lithological units are most prone to landslides 
in the studied area. The land use factor has an 
approximately similar susceptibility on the three 
models. It shows the highest susceptible is in the 
vicinity of settlement, shrubs, rain-fed rice fields, 
agricultural areas, and forestry region.

Comparison and Validation 
Landslide susceptibility maps were construct-

ed from bivariate statistical analysis using the FR, 
WofE, and IV models. The LSMs obtained from 
three models were divided into four zones using 
the quantile method in ArcGis: very low, low, 
moderate, and high (Figure 3). 

Figure 3. Landslide susceptibility map derived from the models of: (a) FR, (b) WofE, (c) IV.
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The areas and the seed cells in the very low, 
low, moderate, and high in LSM of each models 
are shown in Table 3. Most of the landslides in 

shows the majority of the seed cells which are 
in moderate to high susceptibility zones.

Finally, the AUC of the ROC method was 
applied in order to reveal which model is more 
accurate in this study. The AUC was obtained 
for both the training dataset and the validation 
dataset (Figure 4). The AUCs value of success 
rates based on training dataset are 0.92 for the 
FR model, 0.926 for the WofE model, and 0.93 
for the IV. The AUCs value of the prediction 
rate based on the validation dataset for the FR, 
WofE, and the IV models are 0.913, 0.912, and 
0.895, respectively.

The result for the success rate and prediction 
rate curve shows that all the three models exhibit 
a similar performance. The models are found 
to have an excellent fit to the data with a slight 
difference where the IV model is the best one 
with the model accuracy of 93%, followed by 
WofE with 92.6%, and FR with 92%. It means 
the IV model produced the most accurate land-
slide susceptibility map in the studied area. In 
contrast, the model with the highest prediction 
ability is FR model with the prediction accuracy 
of 91.3%, followed by WofE with 91.2%, and 
IV model with 89.5%. It means the FR model 
showed the best accuracy in predicting the land-
slide susceptibility of the studied area.

Zones Area % Seed %

FR Very Low 31.53 8.61

Low 21.65 6.22

Moderate 23.06 12.44

High 23.77 72.73

WofE Very Low 32.99 8.61

Low 20.88 6.7

Moderate 22.46 16.27

High 23.66 68.42

IV Very Low 24.91 6.22

Low 25.07 10.05

Moderate 24.97 22.49

High 25.06 61.24

Table 3. Densities of Landslides among the Classified 
Susceptibility Zones of the Three Models

Figure 4. Success rate curve (a) and prediction rate curve (b) for different models by ROC curve.

the whole studied area with the FR, WofE, and 
IV models have 85.17 %,  84.69%, and 83.73 
% seed cells respectively occuring in areas with 
susceptibility zones of moderate to high. The 
three models produced acceptable results as it 
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Conclusions

It is observed in Table 3, that the moderate to 
high susceptible zones of the LSMs produced by the 
FR, WofE, and IV model cover 46.83%, 46.12%, 
and 50.03% of the studied area, respectively. These 
covered areas are the most landslide-prone regions 
that should be considered in a susceptibility man-
agement. Preferably in the vicinity of settlement, 
shrubs, rain-fed rice fields, agricultural, and forestry 
area, with a slope angle between 18° - 33° and the 
elevation of 500 - 1,000 m a.s.l.

Although this bivariate statistical models, us-
ing the term “favourability values” by Chung et 
al. (1995) were applied in the conditioning factors 
(e.g., slope units, litholigical units, etc.) for better 
values to the expert’s opinion, the selection of 
the models and the landslide related factors was 
based on a consideration within expert’s scientific 
knowledge. This knowledge-base component was 
applied for finding the relevance, availability, and 
scale of data for the studied area.

According to the result given, the success rates 
and prediction rates of the three models are above 
89% (Figure 4). The result reveals that the landslide 
susceptibility map of each model in this study has 
succesfully achieved a high degree of reliability. 
The LSMs of the models will provide spatial-based 
decision making for the of goverment Cianjur Re-
gency and other associated authorities and agencies.
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