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Abstract - Three fossil-bearing intervals have been recognized in the Pleistocene So’a Basin, with the upper one
holding important evidence of hominin fossils. The sequence also contains numerous iz situ stone artifacts and fossils
of other vertebrate taxa. Therefore, multiple dating techniques are crucial to secure the age of the fossil and artifact-
bearing layers, especially the one with the hominin remains. This paper deals with the palaeomagnetic dating of the
So’a Basin sequence to assist other dating methods that have been applied, and to refine the chronostratigraphy of the
area. Palacomagnetic sampling was conducted in four sections along a west to east transect. Four magnetozones can
be recognized, consisting of two reverse and two normal polarity zones. By using the available radiometric ages as a
guide and comparing the So’a Basin magnetostratigraphy with the Standard Geomagnetic Polarity Time Scale (GPTS),
it became clear that both reverse magnetozones are part of the Matuyama Chron, while the normal magnetozones are
the Jaramillo subchron and the Brunhes Chron. These palacomagnetic dating results support the available radiometric
dates and refine the age of the fossil-bearing deposits of the So’a Basin.
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INTRODUCTION

Recently, amandible fragment and six hominin
teeth were recovered from one of the fossil-bearing
strata in the So’a Basin, Flores, Indonesia. These
specimens are relatively similar to the holo-type
of Homo floresiensis from Liang Bua, except the
size which is slightly smaller and the mandibular
first molar that has more primitive characteristics
than the Liang Bua specimens (van den Bergh ef
al., 2016a; see also Brown and Maeda, 2009).

Multiple dating methods were applied to
determine the age of these important hominin

fossils, which are estimated to be c. 700,000 years
old (Brumm et al., 2016). In order to refine the
chronostratigraphy of the So’a Basin sequence
and to allow basin-wide cross correlation, palaco-
magnetic sampling and analysis were carried out
on four stratigraphic sections. The combination
of palacomagnetic dating and other radiometric
dating techniques has widely been used and
proven to be successful for dating archaeo- and
palacontological sites around the world, for
example: the Koobi Fora site (Lepre and Kent,
2010), Sterkfontein Cave (Herries et al., 2010),
and the Melka Kunture site (Tamrat ef al., 2014)
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in Africa, the Ceprano- Fontana Ranuccio site
(Muttoni et al., 2009) and the Poiana Ciresului
site in Europe (Zeeden et al., 2009), and the Ni-
hewan Basin (Zuo et al., 2011; Ao et al., 2013)
in Asia. In Indonesia, palacomagnetic dating was
used to date the Sangiran site in Java (Hyodo et
al., 1993; 2011) and The Talipu site in Sulawesi
(van den Bergh et al., 2016b). Magnetostratigra-
phy was applied to better constrain of the numeric
ages and to complement other dating methods,
including Fission-Track, Argon-Argon, Electron
Spin Resonance, and optical dating techniques.

Geological, Palacontological, and Geochrono-
logical Context of The So’a Basin

The So’a Basin is located in the central
part of Flores, almost entirely surrounded by
mountains and active volcanoes (Figure 1). It
is drained by the Ae Sissa River, which empties
the basin through a deeply incised gorge to the
northeast, and forms a delta plain on the north
coast (O’Sullivan et al., 2001; Suminto et al.,
2009). The basin basement consists of the Ola
Kile Formation comprising massive and resis-
tant andesitic breccias interbedded with minor
tuffaceous siltstones, sandstones, and lava flows.
It had been tilted by tectonic activity which dips

up to 5° to the south (Hartono, 1961; O’Sullivan
et al., 2001; Suminto et al., 2009). The Ola Bula
Formation unconformably overlies the Ola Kile
Formation and fills much of the basin with an up
to 100 m thick sequence. It consists of relatively
undisturbed and horizontally bedded volcanic
and sedimentary deposits, which started to in-
fill the basin during the Late Pliocene or Early
Pleistocene (Murouka et al., 2002; Suminto et
al.,2009). The Ola Bula Formation is divided into
three lithological members, from old to young:
the Tuff Member, the Sandstone Member, and
the Limestone Member (Hartono, 1961; van den
Bergh, 1999; and Suminto et al., 2009 - Figure 2).

Three main fossil-bearing intervals have been
recognized within the Ola Bula sequence. The
oldest fossiliferous layers are developed within
the Tuff Member, which has its most complete
development near the Tangi Talo site in the
central and deepest part of the basin. The fossil
fauna from this level consists of a dwarfed extinct
elephant (Stegodon sondaari), a giant tortoise,
and Varanuskomodoensis, but the site has not
yielded any stone artifact (Sondaar et al., 1994;
Aziz et al., 2009). Two fossil intervals higher up
in the sequence lie within the Sandstone Member
and can be found at the Mata Menge site. Both
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Figure 1. The four site locations of the So’a Basin that were sampled for this study (map modified after van den Bergh, 2010).
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Figure 2. Generalized lithostratigraphy of the So’a Basin (after Suminto et al., 1999).

levels contain the remains of a larger Stegodon
(Stegodon florensis), a giant rat (Hooijeromys
nusatenggara), Komodo dragon (Varanus komo-
doensis), unidentified crocodilian remains, and
stone artifacts (Sondaar ez al., 1994; van den Bergh
1999; van den Bergh et al., 2009; Brumm et al.,
2016). In addition, the upper level has yielded the
remains of a small-sized hominin, and thought to
be the ancestral form of Homo floresiensis (van
den Bergh et al., 2016).

Dates have come from multiple methods. Pre-
viously, the Tangi Talo fossil assemblage was es-
timated to be 0.9 Ma old based on palacomagnetic
and fission track dating (Sondaar et al., 1994;
Morwood et al., 1998). More recently, “°Ar/*Ar
dating by Brumm et al. (2010) of a widespread
ignimbrite marker bed yielded an age of ~1.02
ma. This Wolo Sege ignimbrite (WSI) can be

recognized throughout the basin, including at the
Tangi Talo site, where it occurs at ~20 m above
the Tangi Talo fossil bearing layer. Therefore, the
Tangi Talo fossil bearing layer could be much
older than ~0.9 Ma.

In 2016, the Mata Menge two fossil-bearing
layers have been dated as well. Both fossil intervals
occur above the WSI, indicating that they must be
younger than ~1.02 Ma. Ages of the lower fossil
interval lie between ~0.88 Ma and ~0.8 Ma, based
on the fission-track dating of two sampled levels,
one directly below and one associated with the
fossil bearing layer (O’Sullivan et al., 2001). The
upper fossil-bearing interval, containing hominin
remains, has an age estimate based on its strati-
graphic position, because no direct dating associ-
ated with this sedimentary layer. The hominin layer
occurs 12.5 m above the level that yielded the F-T
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date of ~0.8 Ma and 13.5 m below a tephra layer
dated at ~0.65 Ma by means of “Ar/*Ar dating,
and another primary tephra layer occurring at the
top of the Mata Menge section has been “*Ar/*°Ar
dated at ~0.51 Ma (Brumm et al., 2016). In addi-
tion, there are also U-series ages of a hominin tooth
root fragment and combined U-series and electron
spin resonance (ESR) dates of two S. florensis
molars that were found in sifu in the same layer
as the hominin fossils. The U-series dating yield
a minimum age of at least 0.55 Ma, whereas the
combined U-series/ESR dating indicates minimum
ages around 0.36 Ma and 0.69 Ma, respectively
(Brumm et al., 2016). Based on those dates above,
Brumm et al. (2016) concluded that the hominin
fossil layer is estimated to be ~0.7 Ma old.

MATERIALS AND METHODS

At least six to eight hand specimens were taken
from each of twenty-nine clay and/or silt layers
from the baulks of four step trenches in the So’a
Basin. Sampling was done by carving fresh sedi-
ment surfaces to fit into 8 cm? acrylic cubes. Ori-
entation of the samples followed the procedure of
Tauxe (2003), with a little modification where the
laboratory arrow is the same as the specimen strike
arrow. Additional non-oriented samples were also
taken from each layer for rock magnetic analysis.

Natural Remanent Magnetization (NRM) was
measured using 2G a three-axis cryogenic mag-
netometer from William S. Goore, Inc. (WSGI).
Specimens were stepwise demagnetized using an
alternating field (AF) with increment intervals of
0.5 -2.5 mT up to 100 mT. A duplicate thermal
demagnetization (TD) was also used on each
‘twin’ specimen. However, most of the TD decay
pattern was found to be erratic and hard to inter-
pret. Rock magnetic parameters were measured
using a Princeton Micromag 3900 series Vibrat-
ing Sample Magnetometer (VSM). All analyses
were performed in a magnetic field-free room at
the Palacomagnetic Laboratory of the Australian
National University (ANU) Canberra.

Magnetic minerals were extracted from 10 g
samples dispersed in 80 ml distilled water using
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amagnetic stirrer for SEM-EDX purposes. SEM-
EDX analysis was performed using a JEOL-JSM
6360LA at the Geological Laboratory of the
Centre of Geological Survey of Indonesia.

Magnetic mineral domains were determined
using Dunlop plot (Dunlop ef al., 2002). The Char-
acteristic Remanent Magnetization (ChRM) was
analyzed using Zijderveld diagrams (Zijderveld,
1967) and Principal Component Analysis (PCA;
Kirschvink, 1980) with Puffin Plot software (Lur-
cock and Wilson, 2012). The direction of ChRMs
was determined from orthogonal plots in at least
four to five successive measurement steps with
the maximum angular deviation (MAD) setting
at <15°. The group mean direction was analyzed
using Fisher statistics (Fisher, 1953) in IAPD 2000
software. For reversal tests, the method of McFad-
den & McElhinney (1990) and Butler (1998) was
followed using PMAGTOOL v 4.2 by Hounslow
(2006). One issue that must be taken into account
is that low latitude areas have a relatively weak
geomagnetic force as compared to middle and
high latitudes, especially with regard to the verti-
cal component (Shimizu et al., 1985). Kobayashi
et al. (1971) have found that near the equator, the
inclination (vertical component) has large fluctua-
tions, so that it is not suitable to use it for tracing
geomagnetic reversals. On the other hand, it is also
noted that the declination (horizontal component)
shows sharp shifts at the reversals.

RESULT AND DISSCUSSION

The Carrier of the Magnetization

A Dunlop plot (see Figure 3) shows that
the magnetization carriers consist of a mix of
single- and multidomain (SD-MD) grains, with
a dominance of MD grains of up to 60 — 90 %.
Some of the grain plots show a shift to the SD
and superparamagnetic (SP) mix curve, which
indicates that SP components also occur in some
samples. During demagnetization most of the
intensities are reduced to 10 % from the total in-
tensity prior to demagnetization, at relatively low
AF peaks of 30-50 mT (Figure 4). Above 50 mT,
most specimens are demagnetized completely.
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Figure 3. Hysteresis data for samples from So’a Basin, compared to theoretical model curves by Dunlop (2002). Percentages
along mixing curve are the proportion of grain.
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This indicates that the carriers of the magnetiza-
tion are dominated by low coercivity minerals,
such as magnetite and/or titanomagnetite. The
typical tall and thin hysteresis loops also reflect
the occurrence of magnetite and/or titanomagne-
tite (Figure 5), although such profiles can also rise
from the combination of magnetic minerals with
contrasting coercivities (Roberts ef al., 1995).
However, SEM-EDX was able to confirm that
the carriers of the magnetization likely represent
MD titanomagnetite (Figure 6). This would ex-

plain why the thermal demagnetization (TD) did
not work, because it is not suitable for the magneti-
zation with magnetite carrier (McElhinney, 2000).

The Characteristics Remanent Magnetization
(ChRM)

Most magnetization vectors obtained from all
specimens show two to three separated compo-
nents of NRM on the orthogonal planes (Figure
7). This means that these specimens were af-
fected by a secondary magnetization. However,
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Figure 5. Typical hysteresis loop curves from Mata Menge (top), Wolo Sege (middle), Tangi Talo (lower left), and Gero
(lower right). The wasp-waisted curves represent typical hysteresis loops for mixed magnetic mineral assemblages domi-

nated by magnetite.
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Figure 6. SEM images of representative samples from Mata Menge (a), Wolo Sege (b), and Tangi Talo (c). The euhedral
crystal shapes correspond with titanomagnetite of volcanic origin.

as mentinued before, the secondary magnetization
was easily removed at an AF demagnetization
between 5 to 20 mT, while Characteristics Rema-
nent Magnetizations (ChRMs) could be isolated
at peaks of 30 - 50 mT.

All the ChRMs are either progressing to
the origin of the orthogonal vector projections

or can be defined as the mean vectors that are
stable in the intensity upon a higher AF demag-
netization.

Fisher statistics for group mean directions for
each sampled layer are provided in Table 1 and
the equal area projection is shown in Figure 8.
Although some points are scattered, two groups
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Figure 7. Representative progressive Zijderveld demagnetization diagrams (Orthogonal planes) of samples from Mata Menge
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of opposite polarities can be easily recognized,
and they all passed the reversal test as marked
by the overlap of the normal a95 circle with the
antipode of the reverse a95 circle (grey ghost
circle) (Butler, 1998).

The McFadden & McElhinney reversal test
is also passed, where the observed angle (V) is
not exceeding the critical angle (V) (16.41° to
18.69°) and is classified as a “C” class according
to McFadden & McElhinney (1990).
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The grouping of the points, both normal and
reverse, are better after demagnetization and
the normal polarity group has slightly moved
away from the present magnetic direction after
demagnetization. One possibility is that some
samples were strongly affected by the secondary
magnetic field.

N represents the number of specimens ana-
lyzed per layer, although no firm criteria exist
for acceptability of palacomagnetic data . Within
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Tabel 1. Magnetic intensities and Characteristic Remanent Magnetization Directions (ChRMs) for sampled layers in the So’a Basin. N

represents the number of specimens analyzed per layer, R represents resultant vector, k represents the dispersion of the direction population
and 095 represents the confidence limit. Although no firm criteria exist for acceptability of palacomagnetic data. Within-site k> 30 and a95

values of <15 are generally considered to indicate reliable directions (Butler, 1998)

Intensity (A/m) Remanent Direction
No  Samples ID Before After Mean Mean N R LS
Demagnetization Demagnetization Declination Inclination
1 MTXII 90 2.27E-05 2.35E-07 50.2 -9.7 3 296 4695 182
2 MTXII 260 1.06E-05 2.04E-07 71.5 34.7 5 476 1693 19.1
3 MTXII 60 BR 6.92E-04 7.09E-06 21.2 0.5 4 39 3131 167
4 MTXII 120 BR 7.32E-04 6.67E-06 8.9 -5.9 4 398 180.7 6.9
5 MTXII 265 BR 1.60E-04 4.98E-06 13.7 -4.1 5 453 852 278
6 MTXII 340 BR 9.82E-05 4.29E-06 31.7 -15.5 5 482 2191 167
7 MTXII 505 BR 1.37E-05 1.06E-06 24 -15.9 5 486 2959 143
8 MTXII 1318 1.06E-05 6.35E-07 24.4 -6.7 4 392 2722 5.6
9 Mata 180 2.01E-04 6.87E-06 41.1 -13.3 4 395 5706 123
10 Mata 220 4.21E-05 4.07E-06 22.7 -26.7 4 384 1834 22
11 MTNT 230 4.76E-05 1.36E-06 59.3 -31.2 3 276 272 973
12 MTNT 270 6.52E-06 4.24E-07 57.5 5.3 4 39 3131 167
13 MTNT 400 9.13E-05 3.82E-06 277.7 27.6 5 484 2461 157
14 MTNT 500 1.08E-04 7.43E-06 206.1 23.9 4 374 1176 28
15 MTNT7C 2.29E-04 3.40E-05 29.9 -32.6 5 408 1255 225
16 MTNTIGN 73 7.81E-04 9.59E-06 63.6 -21.5 5 436 621 334
17 MTNT MUD 2.70E-03 9.37E-05 210.8 329 4 396 778 105
18 WLSG 328 1.51E-04 6.53E-06 70.3 7 4 399 2722 5.6
19 WLSG 401 3.38E-05 1.76E-06 232 28.3 4 397 1119 87
20 WLSG 95 ALT 1.12E-04 6.74E-06 59.5 -23.4 4 399 559 39
21 WLSG 745 1.92E-04 1.42E-06 393 -22 5 496 1058 7.5
22 TT25 1.56E-04 1.02E-06 30.8 -31.3 4 389 2633 182
23 TT 50a2010 3.44E-04 2.61E-06 228.2 1.8 5 479 19.18 179
24 TT 2000 2.79E-05 3.57E-06 249.9 38.8 3 294 31.04 225
25 TT 2116 6.99E-05 5.01E-06 235.7 53.7 4 38 1494 246
26 TT FA excav 6.86E-06 4.53E-07 248.3 -6.3 4 371 1028 30.1
27 TT 10 BFA 2.13E-06 5.36E-08 260.8 1.5 5 48 1999 175
28 TT 2406 1.91E-05 5.54E-06 235 -12.1 5 496 1101 73
29 GR3 1.98E-04 4.19E-06 25.9 -28.1 5 483 2394 16

site k >30 and o 95 values of <15 are generally
considered to indicate reliable directions (Butler,

1998).

The Magnetostratigraphy of the So’a Basin
Figure 9 shows the sampled stratigraphic
sections from the So’a Basin together with the
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Before demagnetization

After demagnetization

Figure 8. The equal area projection of individual mean directions obtained from the sampled levels of the So’a Basin. Open
and solid squares in the equal area projections represent the upper and lower hemisphere, respectively. The black circles
with centred crosses represent the mean magnetization directions (95 circle) of normal (northern direction) and reverse
(southern direction) polarities. Grey ghost circles represent the antipodes of the reverse 95 circles. A red cross represents

the present-day magnetization direction.

magnetic polarities. Each section is plotted ac-
cording to their relative topographic elevations,
with Gero section being the highest and Tangi
Talo the lowest. There are also the polarity cor-
relations between sections and the composite
litho- and magneto- stratigraphy as compared
with the Standard Geomagnetic Polarity Time
Scale (GPTS).

A total of four polarity magnetozones have
been recognized in the So’a Basin. At the Mata
Menge excavation section, all four magnetozones
were recovered, which consist of two reverses (R1
and R2) and two normal (N1 and N2) zones. At
the Wolo Sege trench section, there are two nor-
mals (N1 and N2) and one reverse (R2) zone. At
the Tangi Talo trench section, two magnetozones
can be recognized, which consist of one Reverse
(R1) and one Normal (N1) zone, whereas at the
much shorter Gero trench section, only one mag-
netozone was found (N2).

N1 is associated with the WSI. The numeri-
cal “*Ar/*Ar date of 1.02 Ma + 0.2 for the WSI
(Brumm et al., 2010) indicates that N1 corre-
sponds with the Jaramillo subchron on the GPTS.
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Furthermore, N2 at Mata Menge coincides with
the sequence that is dated at ~0.8 — 0.5 Ma, and
therefore correspond with the normal polarity of
the Brunhes Chron. As the event/subchron of the
N1 and N2 magnetozones is known, R1 and R2
can be inferred to correspond with the reverse
polarity of Matuyama Chron (Figure 9).

The fossil bearing level at Tangi Talo (F3 in
Figure 9) is situated below the lower boundary of
the N1 magnetozone (Jaramillo) and it resulted
in the relative age of > 1.07 Ma. It is difficult to
determine the maximum age of this fossil layer,
because the other subchrons are below the Jara-
millo, such as the Cobb Mountain Event (1.24
— 1.22 Ma) or the Gilsa Event (1.68 Ma) were
not recognized, which is not surprising since
the sampling density in this interval is very low.
Denser sampling in the future may reveal these
events and allow a higher resolution in the oldest
part of the So’a Basin sequence. However, this
fossil layer probably will not exceed the bottom
boundary of the Olduvai subchron (1.95 Ma),
because a sample from the Ola Kile Formation,
the top of which lies at ~2 m below the lowest
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Figure 9. Magnetostratigrahy of the So’a Basin compared with radiometric dating results and the Standard Geomagnetic
Polarity Time Scale [Geomagnetic Polarity Time Scale (GPTS), 2016]. Declination and inclination are the averages of the
higher coercivity stable magnetization (ChRM). Black squares represent Normal Polarities and white squares represent

Reverse Polarities.

Reverse sample in the Tangi Talo section, was
dated at 1.8 Ma based on FT dating (O’Sullivan
etal., 2001).

The two fossiliferous intervals in the Mata
Menge section (F2 and F3 in Figure 9) are
located above the boundary between R2 and
N2. The lower (F2) and the upper (F3) are situ-
ated about 2.5 m and 12 m above the R2-N2
boundary, respectively. This means that those
fossil layers are located above the boundary of
Matuyama event (R2) and Brunhes event (N2)

which means that both of them are younger than
~0.781 Ma.

These palacomagnetic dating results have
implications for the previous age estimates of
fossil assemblages from the So’a Basin.

Firstly, palacomagnetic dating of the Tangi
Talo section combined with the “°Ar/*’Ar dates
given by Brumm et al. (2010) indicates that the
Tangi Talo fossil-bearing level is older than previ-
ously thought. Instead of 0.9 Ma it now appears to
be older than 1.07 Ma. Secondly, palacomagnetic
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dating has also confirmed the estimated age of
the hominin remains, which were assumed to be
~0.7 Ma old (Brumm et al., 2016). This estima-
tion matches the palacomagnetic dating result
of Mata Menge section, which indicates that the
hominin layer (F3) is younger than ~0.781 Ma.
In addition, the palacomagnetic results also show
that previous age estimates for the lower fossil-
bearing interval at Mata Menge (0.8 - 0.88 Ma;
see O’Sullivan et al., 2001) were slightly too old,
and should be considered as minimal ~0.781 Ma.

CONCLUSION

Palacomagnetic dating in the So’a Basin has
recovered four polarity magnetozones. These
magnetozones, from old to young, are as follows:
R1 corresponds with the Matuyama Chron below
the Jaramillo subchron; N1 with the Jaramillo
subchron; R2 with the Matuyama Chron between
the Jaramillo subchron, and the Brunhes Chron;
and N2 with the Brunhes Chron.

These palacomagnetic dating results support
and refine the previously published radiometric
ages related to the palaeontological and/or ar-
chaeological sites of the So’a Basin. The Tangi
Talo fossil layer is situated below the bottom
boundary of the Jaramillo. This provides a relative
minimum age of > 1.07 Ma for the Tangi Talo fos-
sil fauna, which is older than previously thought.
Furthermore, two fossil intervals occurring in
the Mata Menge section are located above the
Matuyama-Brunhes boundary, which indicates
that they are younger than 0.781 Ma.

However, it is necessary to propose additional
studies with high resolution sampling interval in
the studied area, in order to obtain a complete
and the more appropriate stratigraphic age suc-
cession data.
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