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Abstract - The purpose of the study of Terrestrial Laser Scanner (TLS) application in an active volcanic crater is to 
detect the influence of gas emission and local atmospheric change into the accuracy of measurement.The measure-
ment was conducted at Papandayan Volcano crater, along with the local temperature, humidity, and air pressure (thp). 
The measured target located near a gas emission hole gives a significant fluctuative range due to possible false return 
by gas particles. The refraction index was calculated using thp data. Two correction models were applied: velocity-
geometry and atmospheric delay correction. The atmospheric delay correction gives a more reliable result, however 
their refraction index calculation does not accomodate specific volcanic gas yet. An intensity map obtained from TLS 
can also be used for rock segmentation. An experiment from some types of volcanic rocks shows that the intensity value 
is influenced by a weathering degree of rock outcrops. Rock segmentation using TLS intensity data for fresh outcrops 
is relatively easier, while for weathered rocks it still needs a field check for validation. The temperature of volcanic 
rocks also contributes to the intensity value. It is found that the intensity increases along with the temperature of rock.
Keywords: laser scanner, gas emission, correction model, intensity

© IJOG - 2020. All right reserved

Introduction
Terrestrial laser scanning is a method of surface 

sampling using laser technology. Scanning with 
laser has the objective to collect visual data of an 
object that includes the shape and colour. Data 
collected can then be used for 3D reconstruction 
with the help of various types of software. Scan-
ning with laser has advantages compared with 
conventional methods (e.g. tacheometry, EDM, 
photogrametry), in terms of higher accuracy and 
less time consume during a field survey (Pesci 

et al., 2008). In addition, laser scanning results 
can record a huge number of points named point 
clouds that contain data of x, y, z (RGB, I), with 
xyz is the position of an object, I is the intensity 
and RGB is the colour of an object. TLS can re-
construct digital model of an object precisely with 
the accuracy up to submillimeter (Colombo and 
Marana, 2010). TLS method is able to describe 
the condition of outcrop/surface closer to the 
actual condition, both in terms of geometry and 
spatial with excellent accuracy. Therefore, it can 
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be applied for deformation monitoring (Waggot 
et al., 2005 and Tsakiri et al., 2006). 

In addition to these advantages, the TLS has 
error sources that can affect the measurement 
results and can reduce the accuracy. These errors 
are related to four sources, namely: equipment, 
methodology of data collection, environmen-
tal, and scanned objects (Quintero et al., 2008; 
Reshetyuk, 2009).

A research to determine the error source from 
instrument has been done by Litchi et al. (2006)  
and Reshetyuk (2009). The two researchers have 
conducted modeling and calibration using Faro 
880, Callidus CP 3200, Leica HDS 3000, and the 
Leica Scan Station. In addition, to examine the 
error originating from the instrument, Reshetyuk 
(2009) also examined the error source derived 
from the methodology, particularly in geo-refer-
encing process.

Hunter et al. (2003), Jones (2007), Pesci et 
al. (2008), Bonforte et al. (2011), Vidyan et al. 
(2013), and  Jones et al. (2015) had apllied TLS 
measurement in a volcanic area, but only limited 
in deformation and slope stability monitoring, and 
3D topography modeling. The researchers did 
not discuss the performance, nor the accuracy of 
measurement data in detail. They also did not dis-
cuss the error sources of volcanic environments, 
especially the ones associated with the activity of 
volcanic gases and local atmospheric conditions.

Rueger (1990) had written speed and geometry 
correction formula for measurement by Electro-
optic Distance Meter (EDM) which used visible 
waves (optical). Meanwhile, Wijaya (2010) had 
formulated a unified zenith delay correction 
models for satellite-based distance measurement 
using micro (GNSS/VLBI) and optical (SLR) 
waves. Therefore, a correction model of these 
two researchers was tried to be applied for TLS 
measurement results, in other words to use or test 
the old concept with new technology.

A research on the response of scanned object, in 
this case expressed in terms of intensity, had been 
conducted by Litchi and Harvey (2002), Pfeifer 
et al. (2007), and Voegtle et al. (2008).The three 
researchers scanned artificial objects, metal, and 

some rocks which were not of volcanic eruption 
product. Their study emphasizes on intensity val-
ues and their relation to the distance and angle of 
the scan. In this research, the focus is on a volca-
nic rock, especially the relation between volcanic 
rock surface properties (including colour, surface 
texture, crystal content, pores, temperature, and 
impurities) with intensity values. This study of rock 
intensity is a preliminary quantification. Implica-
tions of the intensity value to distance accuracy are 
not described in detail, since they require another 
parameter that should be tested.

Error Source of TLS in Volcano Environment 
Error sources within volcanic environment is 

very complex due to several factors that occur si-
multanously and they can affect the measurement 
results, as illustrated in Figures 1 and 2. Sources 
of error associated with wave dispersion are due to 
separation of spectrum frequency of laser beam on 
inhomogeneous medium/atmosphere, in this case 
the medium containing particles of volcanic gases.

Local weather in an active volcanic crater 
tends to be fluctuative quickly, and will contribute 
in reducing the accuracy of measurement. Hunter 
et al. (2002) has applied TLS in Mount Etna 
and found that TLS has limitation to penetrate 
volcanic fog. Radiometric contribution has to be 
considered. 

Ingensand (2006) offended correlation between 
scanned object factors and measurement results. 
He states that in theory, the error of the coordinate 
system (Sxyz) from a point cloud is a function of:
•	 distance (D); which correlates with atmo-

spheric parameters
•	 reflectivity of the object; affects the signal to 

noise ratio (SNR)
•	 ambient light; affect SNR
•	 angle of incidence ray (θ)
•	 wavelength; correlated with surface roughness 

of rock and produce spots/speckles 
•	 (white noise)
•	 colour of the object surface
•	 object surface roughness
•	 geometry of the object; could lead to multipath 

effects
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Bonforte et al. (2011) stated that volcanic 
rocks of black porous lava had poor reflectiv-
ity characteristics. It means that the nature and 
types of objects have different responses to 
TLS. Boehler and Marbs (2002) said that TLS 
measurements in areas of dust or water vapour/
gas could cause an error resembles the edge ef-
fect. This is because laser propagation velocity 
changes due to variations in temperature and 
pressure. Edge effects occur if part of the object 
edge is reflected, while the other part was behind 
or around the scanned object. Even if there are 
no other objects in the vicinity, the laser will not 
be reflected at all.

Grantham et al. (1997) who conducted a study 
on the atmospheric effects into TLS measurement 
results discovered a phenomenon of dropout 
pixels, a condition in which the laser pulse is too 
weak to trigger a receiver, so the record is zero or 
maximum value of the pixel. This phenomenon 
is associated with laser attenuation. Grantham et 

al. (1997) also concluded the presence of false 
return phenomenon, which were laser dispersed 
by rain water droplets, aerosols, water vapour, or 
dust particles suspended in the air, that was strong 
enough to trigger the receiver. Most of transmit-
ted laser energy is reflected by the particles and 
partly by the object surface. These conditions 
build up laser pulses (multiple return pulses) 
and contaminate generated data, thus complicate 
object scanned identification process.

Material and Methods

TLS Acquisition in A Volcanic Crater Area
TLS range measurement was conducted at 

Papandayan Volcano, West Java, using Leica Scan 
Station C10. Three planar targets were placed 
near a gas emission hole at some distances: ± 
50 m (target A), ±100 m (target B), and ±150 m 
(target C). During the measurement, volcanic gas 

Figure 1. Illustration of possible error budgets obtained in an active volcanic area (Haerani, 2016).
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emission often crossed in front or near the target, 
mostly to target A.

Each target was measured fifty times, but 
on target C~150 m the measurements can only 
be done twenty-one times due to the instrument 
problem. The specifications of the instrument 
could actually reach optimal distances up to 300 
m, but the volcanic crater conditions with a lot of 
gas emission obstructed the view between TLS 
and the target. During the distance measurement, 
weather data recording thp (air temperature, rela-
tive humidity, and air pressure) also performed 
automaticsensor (TNDD TR-73U) every 5 sec-
onds. Two thp sensors were placed on TLS (base) 
and in the target (rover). At measurement of target 
B~100 m, a gap occured ± 60 minutes at rover 
sensor due to data downloading process.

Intensity Value Experiment
A simple experiment to determine the intensity 

of a volcanic rock was performed by scanning 
some examples of volcanics (volcanic bombs, 
lava, and pumice) with various surface proper-
ties. Volcanic rocks selected in this experiment 
are a common type of volcanic rock in Indonesia 
(andesitic-basaltic type).

The intensity measurements were carried out 
inside a room with a distance of 3.6 m, with dif-
ferent lighting (dark and bright light conditions). 
Reshetyuk (2006) concluded that for TLS type 
Leica HDS 3000, there was no systematic differ-
ences in ambient lighting. This experiments also did 
not perform a scan from several different distances, 
because the addition of the distance would reduce 
the intensity values (Pfeiffer et al., 2008). Volcanic 
rocks scanned are in dry conditions to avoid the 
water particles that can serve as a dominant reflec-
tor (water film). In this experiment, pure intensity 
values derived from the rock surface were expected 
to be obtained. Point cloud used Cyclone v.7 for 
object filtering process, converted to ASCII format. 
Plotting and normalization of intensity values were 
done by using Matlab software. Scanning process 
used a high resolution setting with air temperature 
at the time of scanning was 25.9 - 26°C; 59 - 61% of 
relative humidity, and 933.3 m bar of air pressure. 

In order to determine the relationship between 
an intensity value and object temperature, a scan-
ning process was performed at some areas of 
Papandayan volcanic crater, to obtain an intensity 
map. Some parts of point clouds on the intensity-
map was sampled and converted to ptx format for 
viewing the intensity value, then correlated with 
the estimated temperature value obtained with a 
thermal camera. The type of thermal camera used 
is FLIR T-440.

Calculation of Refraction Index
A calculation for refractivity of wet air com-

ponent (consisting of dry air and water vapour) 
in some standard conditions was proposed by 
Ciddor (1996). He also calculated the density 
of each component relative to the total density 
at standard conditions. The standard refractiv-
ity value was then multiplied by the value of 
the relative density to get a partial refractivity 
value, and then the results of each component 
were combined. He also combined multiple 
equations to calculate the refractive index of 
Barrels and Sears (1939), Erickson (1962), 
Edlen (1966), Owens (1967), Peck and Reeder 
(1972), Birch and Downs (1994), and Hou and 
Thalmann (1994), 

Input data used in the calculation of the 
refractive index include: wavelength (γ), air 
temperature (°C), air pressure (P, Pascal), the 
partial pressure of water vapour (Pw, Pascal), and 
the CO2 content (xc, ppm). The density of dry air 
component (ρds) is calculated at 15°C temperature, 
pressure 101325 Pa, and xw = 0 (xw=e/P is the 
molar fraction of water vapour in moist air). The 
density of pure water vapour (ρvs) is calculated at 
20°C, 1333 Pa, xw = 1. The formulation by Ciddor 
(1996) was carried out through several stages of 
the calculation. In this calculation, some constants 
used are as follows:
1.	 Constans for standard phase calculation and 

refractivity group of dry air component: k0 = 
238.0185 µm-2; k1 = 5792105 µm-2; k2 = 57.362 
µm-2; k3 = 167917 µm-2.

2.	 Constans for standard phase calculation and 
refractivity group of water vapour component: 
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w0 = 295.235 µm-2; w1 = 2.6422 µm-2; w2 = 
-0.032380 µm-4; w3 = 0.004028 µm-6.

3.	 Constants for svp (saturation vapour pressure) 
calculation: A = 1.2378847 x 10-5 K-2; B = 
-1.9121316 x 10-2 K-1; C = 33.93711047; D = 
-6.3431645 x 103 K.

4.	 Factorial number to enhance water vapour: α = 
1.00062; β = 3.14 x 10-8 Pa-1; γ = 5.6 x 10-7 °C-2.

5.	 Compresibility calculation uses: Z = 1 – (p/T)
[a0 + a1t + a2t

2 + (b0 + b1t)xw + (c0 + c1t)xw
2] 

+ (p/T)2(d + exw
2)

with: 
a0 = 1.58123 x 10-6 K Pa-1; 
a1 = -2.9331 x 10-8 K Pa-1; 
a2 = 1.1043 x 10-10 K-1 Pa-1; 
b0 = 5.707 x 10-6 K Pa-1;
b1 = -2.051 x 10-8 Pa-1; 
c0 = 1.9898 x 10-4 K Pa-1; 
c1 = -2.376 x 10-6 Pa-1; 
d  = 1.83 x 10-11 K2 Pa-2; 
e  = -0.765 x 10-8 K 2Pa-2.

Calculation from Ciddor (1996) produces a 
refractive index that has encompassed all known 
factors (except oil contamination of the atmo-
sphere as vapour/liquid water and the effects of 
absorption). In addition, these calculations have 
included all of physical parameters and units, as 
well as valid for all atmospheric conditions and 
a wave length between 350 to 1,300 nm.

Velocity and Geometry Correction (Rueger, 
1990)

As mentioned before, in this study, a TLS 
Leica ScanStation C10 was used, which had 
Time of Flight (TOF) measurement principle. 
The distance measurement can be formulated 
as follow:

2 ' ( )R Ed c t c t t= ∆ = − ................................... (1)

Where:
d = distance displayed in TLS
c = velocity of light in a vacuum
∆t’ = measured ‘flight’ time of the signal to the   

target and back

tE = time of departure of pulse
tR = time of arrival of returning pulse

Assuming that velocity of light in a normal 
medium (air) is known, then velocity of light 
propagation can be calculated if refraction index 
of air and velocity of light in a vacuum is known:

occ
n

= ............................................................(2)

Where:
n = refraction index of medium
co = velocity of light in a vacuum
c = velocity of light in medium

Formula (1) shows that distance accuracy (d) 
relies strongly on TOF accuracy (∆t’). Substi-
tution of formula (2) to (1) forms equation as 
follow:

''
2

o

REF

c td
n

∆
=  ............................................... (3)

Where:
d’ = distance displayed on instrument
co = velocity of light in vacuum
∆t’ = measured ‘flight’ time of the signal to the 

target and back
nREF = reference refractive index of the instrument

Reference refractive index (nREF) is defined as 
follow:

2
o o

REF
MOD MOD MOD

c cn
f Ufλ

==  ...................... (4)

Where:
λMOD = constant modulation wavelength of in-

strument
fMOD = constant modulation frequency of instru-

ment
U = unit length of instrument, it is half ofMOD

After several steps (Rueger, 1990), K1 can be 
derived and written as:
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( )1 ' REFK d n n=− ........................................ (5)

Distance corrected (d) expressed becomes:

' '( )REFd d d n n= + −.................................... (6)

' 1d d K=+  ..................................................... (7)

2nd velocity correction can be calculated using 
equation as follows:

'2K d n= − ∆……..............…..................… (8)

or

'3
2

22 ( )
12

dK k k
R

= − − …………..........….. (9)

Where:
K2 = 2nd velocity correction
k = coefficient of refraction
d’ = measured distance
R = mean radius of curvature of the spheroid

1/
1/

curvatureofraypath r Rk
curvatureofsphreroid R r

= ==  ......... (10)

Rr
k

=  .......................................................... (11)

1 1sin dnz
r n dh

 =−  
  

...................................... (12)

Where:
(dn/dh) is vertical gradient of refractive index of 
air, and z is the angle between the direction of 
gradient of refractive index and the tangent to 
wave path.

Geometric correction (K3) obtained used equa-
tion as follow:

3 3
22 1

3 2 224 24
d dK k

r R
= − = − ...................... (13)

Unified Zenith Delay Model (Wijaya, 2010)
The phenomenon of atmospheric delay has 

been modeled by Marini and Murray (1973) 
and Saastamoinen (1973). In 2004, Mendes 
and Pavlis created a new zenith delay model 
that was more accurate and could be applied to 
SLR wavelength (Satellite Laser Ranging). The 
formulation of Mendes and Pavlis (M-P) model 
uses the equation refractive index and density 
of water vapour from Ciddor (1996) as well as 
Ciddor and Hill (1999). This equation is com-
monly used in SLR with a wavelength of 0532 
µm. The final formulation of hydrostatic zenith 
delay model (M-P) is:

624,16579 ( ) 10
( , )

z s
ho h i

Pf f
f H

τ
φ

−= ×
 
... (14)

Wijaya (2010) created a unified zenith hydro-
static delay model (ZHD) from (M-P) models and 
dispersion refractivity group equation of Ciddor 
(1996) and resulted in the formulation:

60,1022 ( ) 10
( , )

z s
ho dg i

Pk f
f H

τ
φ

−= ×
 

...... (15)

with: 
z
hoτ : Zenith hydrostatic delay (ZHD) for optic 

wave
( )dg ik f : dispersion formula for refractivity group 

sP  : surface pressure (Pa)
 ϕ : latitude of observation station 
H : elevation of station (Km from sea level)

Where :
( , ) 1 0,00266cos 2 0,00028f H Hφ φ= − −  ....... (16)

ZHD formulation of equation (14) and (15) 
is slightly different. Mendes and Pavlis (2004) 
created ZHD models by first derived density 
of dry atmosphere ρd as a function of pressure 
(P), temperature (T), and the vapour pressure 
(e). Then based on the ideal gas equation, they 
derived the total atmospheric density ρt and 
group refractivity based on modified dispersion 
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formulation for wavelength 0532 µm. ZHD 
formulation by Wijaya (2010) indicates that 
equation by Mendes and Pavlis (2004) can be 
calculated in a more simple way. Besides, his 
formulation was prepared without simplifica-
tions and approximations. The values ( )dg ik f
of dry air are not defined in the formula, so any 
dispersion formula can be used to determine 
ZHD, but this case is recommended to use the 
dispersion formulation of Ciddor (1996).

Zenith wet delay was integrated from Saa-
stamoinen model (1973) and the definition of 
slant wet delay by Davis et al. (1985). The final 
formulation is obtained as follows:

6 *10 ( )
4

z d
vo vg i s

m

Rk f e
g

τ −= ........................... (17)

Where:
z
voτ  : Zenith wet delay measurement of optical 

wave
* ( )vg ik f : groupped dispersion for water vapour

Rd  : specified gas constant for dry air = 287.05 J/
kg/K (Wallace dan Hobbs, 2006)

es : water vapour surface pressure 
gm : the acceleration due to gravity at the centre 

of vertical column of air (m/dt2)

),(784,9 Hfgm ϕ×= ...............................(18)

To estimate atmospheric delay at any elevation 
angle, mapping function (MF) is applied to map 
relationship between elevation and ray propaga-
tion. Marini (1972) stated that the MF could be 
formulated in the form of a simple 1/sin (∈) which 
is the cutting of the equation:

                                              
................... (19)

3)sin(
2)sin(

1)sin(
31

21
11

)(

a
a

a
a

a
a

m

+∈
+∈

+∈

+
+

+

=∈

                               

with ∈ is the elevation angle of the rays, and 
the coefficients ai (i= 1, 2, 3) were determined 

by least square fitting on beam curve depending 
on variation of meteorological parameters at 
the measurement location. MF is based on the 
assumption of hydrostatic equilibrium and sym-
metry azimuth and stating ratio of atmospheric 
delay at multiple elevation geometry, for example, 
delay to zenith direction.

Results and Discussion

TLS Range Measurement
Distance measurement results (initial data) 

are shown in Figures 3 to 5.These figures noted 
some data fluctuation. The measurement of Tar-
get A~50 m fluctuations occur at the beginning 
to 12th measurement, after that the measure-
ment results are relatively stable. The results 
of measurements at distances of B~100 m and 
C~150 m fluctuations occur during the measure-
ment time. Fluctuations of Target A~50 has the 
range from 1 mm (smallest) to 5 mm (largest), 
at B~100 m and C~150 m, the smallest is 1 mm 
and the largest is 2 mm. Fluctuations in A~50 
m is relatively larger due to target position that 
is closer to the gas emission holes, while the 
positions of target B~100 m and C~150 m are 
further from the gas emission holes. The volca-
nic gas emission activity was continuing along 
the measurement process, some of gas particles 
passed in front of the target while laser beam hit 
the target. The average of measurement data can 
be seen in Figures 3 to 5 and Table 1.

The record of temperature, relative humid-
ity, and air pressure (thp) data at base (TLS) 
and target is shown in Table 2. The temperature 
range at TLS base station is 15.3 - 23.6 °C, rela-
tive humidity 83 - 53%, and pressure of 785.1 
- 783.2 hPa. The temperature range at target is 
14.7 - 24.2 °C, relative humidity 87 - 43%, and 
pressure of 783.1 - 782.1 hPa. The range thp 
between TLS base station and target did not 
show any significant difference although thp at 
both places experienced fluctuation, but they 
give the same pattern.
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Figure 3. Horizontal and slope distances obtained by TLS measurement for Target A.
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Corrected Distance and Comparison of Two 
Correction Models

The corrected distance using velocity and 
geometry correction model are calculated using 
Equation (5) until (13). The correction result is 
summarized in Tables 2 and 3 and Figures 6 and 7.

The comparison of initial measurement with 
velocity and geometry correction results (Figures 
6 and 7) shows that for a distance of ~50 m the 

corrected distance is shorter.While for B ~100 
m and C ~150 m, it shows longer distances. 
K1shows a significant value in each range, even 
reaching a fraction of cm at A~50m. However, K2 
and K3 show a very small value, as summarized 
in Tables 3 and 4. These small values of K2 and 
K3 are interpreted due to the involvement of 
spheroid curvature variables (R, radius of the 
earth ), while the distance measured in this study 
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is relatively short. These small values cause K2 
and K3 overly into K1 (ignored). In the further 
discussion, only K1 with ZHD model results 
which will be discussed.

ZHD correction model for TLS measurement 
distance applied uses Equation (15) to (19). The 
result of ZHD correction model can be seen in 
Table 5. Corrected distance for Target A shows 
a shorter distance for both correction model (K1 
and ZHD), whileTargets B and C indicate the 
opposite pattern. In this case, ZHD model is con-
sidered to represent more actual size. Based on 
the difference value obtained from both correction 
model (Table 5), ZHD models show a consistent 

value than K1. In addition, the consistency of 
the difference is related to the distance between 
targets which are relatively the same, about 50 m.

Distribution of observation data is expressed 
by box plots on the right column of Figures 6 
b, d, f, and 7 b, d, f. Targets A, B, and C show 
asymmetric distribution patterns, marked by 
elongated whisker on one side. Targets A and B 
show a distribution tendency of negative skew-
ness, while target C shows a positive skewness. 
All distribution pattern of d, K1, and k shows 
the same pattern. This asymmetry indicates that 
there are outliers on data out of central tendency. 
Comparison of 2D position for each targets based 

Measured 
distance (m)

A~50 B~100 C~150

Horizontal Slope Horizontal Slope Horizontal Slope
Average 52.29417 52.29543 98.44666 98.61088 147.83071 149.25317
σ 0.00104 0.00105 0.00086 0.00082 0.00054 0.00046

Table 1. Range of Measurement Result (Average)

Table 2. Time of Measurement and thp Range at TLS Base Station and Target

Target
Time of measurement thp at TLS thp at target

Start End T (°C) h (%) P (hPa) T (°C) h (%) P (hPa)
A 11:58:11 13:24:07 15.3 - 17.2 74 - 84 784.3 - 785.2 17.9 - 22 50 - 61 781.5 - 784.2
B 13:29:10 15:54:48 16.8 - 21.4 50 - 74 783.4 - 784 15.9 - 22.1 46 - 75 779.2 - 783.6
C 16:35:00 17:58:50 15.3 - 17.2 74 - 84 784.3 - 785.2 14.8-15.9 76 - 86 782.1 - 783.2
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Figure 5. Horizontal and slope distances obtained by TLS measurement for Target C.
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Figure 6. Comparison between initial horizontal distance (d), corrected distance using velocity correction model (K1), and 
ZHD model (k). Right columns (b, d, and f) show box plots for observation data.

on local coordinates is presented in Figure 8, 
while the 3D position in Figure 9. Both figures 
show that ZHD correction gives a smaller shift 
position than K1. For target A, the data tend to be 
more fluctuative at the beginning of measurement, 
possibly related to the phenomenon of false return 
(laser beam reflected by volcanic gas particles).

The difference between initial data (d) and 
corrected data (K1 and k) is presented in Table 6. 
The table shows that ZHD correction gives values 
close to the goal accuracy (based on Leica Scan 

Station C10 specification), which is 6 mm for 
position and 4 mm for distance. While K1 gives 
a higher value as well as positive and negative 
values. Thus, from an experiment using velocity 
and ZHD model, correction method using ZHD 
model is better than the fisrt one. 

Figures 8 and 9 also note that ZHD correction 
(k) gives a shorter corrected distance which meets 
Fermat principle stating that the actual distances 
between two points measured by electromagnetic 
waves are those that have shorter travel times. In 
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Figure 7. Comparison between initial slope distance (d), corrected distance using velocity correction model (K1), and ZHD 
model (k).

Table 3. Average of 1st Velocity (K1), 2nd Velocity (K2,) and Geometry (K3) Correction Result for Horizontal Distance

A~50 m
correction (m) σ (m) B~100 m

correction (m) σ (m) C~150 m
correction (m) σ (m)

K1 -1.149x10-2 0.00336 6.846x10-3 0.00082 9.825x10-3 0.00064
K2 -4.479x10-11 0.00336 -1.714x10-10 0.00082 5.020x10-15 0.00064
K3 -1.092x10-7 0.00336 -6.678x10-10 0.00082 -5.867x10-13 0.00064

Table 4. Average of 1st Velocity (K1), 2nd Velocity (K2), and Geometry (K3) Correction Result for Slope Distance

A~50 m
correction (m) σ (m) B~100 m

correction (m) σ (m) C~150 m
correction (m) σ (m)

K1 -1.149x10-2 0.00336 6.857x10-3 0.00078 9.920x10-3 0.00054
K2 -4.480x10-11 0.00336 -1.722x10-10 0.00078 5.069x10-15 0.00054
K3 -1.092x10-7 0.00336 -6.711x10-10 0.00078 -6.038x10-13 0.00054
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Table 5. Comparison of Average Data: Initial Distance (d), Corrected Distance Using Velocity Model (K1),  and Corrected 
Distance Using ZHD Model (k)

Target d (m) k (m) K1 (m) d-k (mm) d-K1 (mm)
Horizontal distance

A 52.29417 52.29021 52.28328 3.96 10.88
B 98.44666 98.44273 98.45350 3.93 -6.85
C 147.83071 147.82684 147.84057 3.87 -9.86

Slope distance
A 52.29543 52.29147 52.28455 3.96 10.88
B 98.61088 98.60695 98.61774 3.93 -6.86
C 149.25317 149.24930 149.26313 3.87 -9.95
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Figure 8. 2D position comparison of d (X0,Y0) red spot, K1 (XK1,YK1) green spot, and k (Xk,Yk) blue spot.

addition, in terms of volcanic environment, the 
shorter corrected distance is in accordance with 
the phenomenon in Figure 2, where the distance 
measurement is influenced by the parameters 
of surface volcanic activity and the local atmo-
spheric conditions.

RMS error of atmospheric delay correction 
calculation method can be estimated with pressure 
parameters (P), temperature (T), and the water 
vapour pressure (eo) which can be formulated as 
follows (Abshire and Gardner, 1985):

                                                                                                        .... (20)

with σP, σT, and σeo declare RMS on P, T, and 
eo. Figure 10 shows the simulation results of a 
decrease in P, T, and eo at elevation angle 5° up 
to 90°. From the figure, it is seen that P gives the 
greatest RMS. Simulation value of P, T, and eo 
at 10° elevation and equation (9) gives the RMS 
value of 4.3 mm (Hulley, 2007).
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In this study, the elevation between TLS stands 
and Targets A, B, and C is very small (about 
0.54°). If this value is simulated into Figure 10, 
the RMS value is greater than 4.3 mm. Table 7 
shows that RMS value for all three targets on 
parameters of temperature, pressure, and water 
vapour pressure is in the range of 8.89 to 10.69 
mm. Moreover, because of this small elevation 
value, it is assumed that there is no horizontal 

gradient effect. The differences in topographic 
height between TLS stand with targets A, B, and 
C are 0.4, 5.7, and 20.5 m, respectively.

Atmospheric delay model assumes that atmo-
spheric conditions is in hydrostatic equilibrium. 
Irregularities related to turbulence, temperature 
changes, and vertical acceleration generated an 
error against the meteorological measurements 
(thp) itself. Saastamoinen (1973) estimated the 
maximum error of 1.5 cm at the elevation of 
10°, while Hauser (1991) stated that for moun-
tainous environment the error was smaller than 
1 cm for elevation of up to 20°. In this study, 
the meteorological parameters are limited to 
thp variations in an active crater environment, 
whereas the effects of turbulence and atmosphere 
stratification layers of active crater surface is not 
discussed in detail.
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Figure 9. 3D position of d (X0,Y0,Z0) red spot, K1 (XK1,YK1,ZK1) green spot, and k (Xk,Yk,Zk) blue spot.

Target
2D position accuracy 

(mm)
3D position accuracy 

(mm)

K1 k K1 k

A 15.3877 5.5989 18.8461 6.8572

B 9.6817 5.5579 11.8577 6.8070
C 13.8418 5.4816 16.9527 6.7135

Table 6. Comparison of Position Accuracy as a Result of 
Velocity Correction Model (K1) and ZHD Model (k)
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Intensity of Volcanic Rocks
Tables 8 and 9 show the results of scanned 

volcanic rocks. For PBCB, there is a separation 
for dark (black-gray) and light (red-brown) parts 
to detect any differences on the intensity values.

The histograms in Figure 11 show that a 
darker colour has narrower ribbons of intensity 
values with peak values in the range of 0.15. 
While lighter colour has a wider ribbon and 
gives two patterns, one is in the range of <0.15 

and the other at 0.15 to 0.2. Observing this 
histograms, it can be concluded that the darker 
colour has a more focused intensity value than 
the lighter one.

The intensity value histogram for the other 
rock samples can be seen in Figure 12. Figures 
12 a, b, c, and d represent samples of fresh rocks, 
while images on the right columns (Figures 12 e, 
f, g, and h) indicate a group of weathered/altered 
rock samples (PCDB-1, GLBA-2, TPF, PCDB-
2). From both groups of rock samples, the fresh 
rock provides intensity value histogram with 
clear dominant values and narrow band, while 
the weathered/altered rock has a wider intensity 
value range with several peak values.

To detect the correlation of mean intensity to 
scanned object properties, some graphs (Figures 
13 to 15) are created based on megascopic ob-
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Figure 10. Atmospheric delay variation related to pressure, temperature, and water vapour pressure for elevation 5° to 90° 
(Hulley, 2007).

Target
Average

RMS (mm)T (C) e (hPa) P (hPa)
A 20.06 12.98 783.29 10.61
B 18.80 13.51 782.09 10.69
C 15.27 14.32 782.76 8.89

Table 7. RMS of Corrected Distance (using Atmospheric 
Delay Model) related with Parameter of Pressure (P), 
Temperature (T), and Water Vapour Pressure(eo)

No. Rock code Rock type #point clouds Min - max intensity*)

1 PBCB (dark part) Breadcrust bomb 6888 0.0761-0.3119
2 PBCB (light part) Breadcrust bomb 3243 0.0743-0.2770
3 AKB Breadcrust bomb 17323 0.0741-0.2240
4 PCDB-1 Cowdung bomb 5635 0.0753-0.2308
5 GLBA-1 Basaltic  lava 4191 0.0797-0.2191
6 KKL Andesitic lava 11525 0.0741-0.2360
7 GA Andesitic lava 4298 0.1000-0.2345
8 TPF Pumice 2047 0.1512-0.3361
9 GLBA-2 Basaltic  lava 3024 0.0804-0.2267
10 PCDB-2 Cowdung bomb 4391 0.0753-0.1957

Table 8. Summary ofVolcanic Rock Scanning Result

*) obtained with Cyclone v.8.
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No. Rock Code Dominant intensity *) Mean intensity σ
1 PBCB (dark part) 0.1500-0.2000 0.1587 0. 0165
2 PBCB (light part) 0.0743-0.2770 0.1731 0. 0241
3 AKB 0.0741-0.2240 0.1679 0. 0195
4 PCDB-1 0.0753-0.2308 0.1693 0. 0236
5 GLBA-1 0.0797-0.2191 0.1653 0. 0079
6 KKL 0.0741-0.2360 0.1893 0. 0097
7 GA 0.1000-0.2345 0.1909 0. 0099
8 TPF 0.1512-0.3361 0.2410 0. 0193
9 GLBA-2 0.0804-0.2267 0.1853 0. 0159
10 PCDB-2 0.0753-0.1957 0.1563 0. 0100

Table 9. Normalized Intensity Value of Scanned Volcanic Rocks

Figure11. Intensity value histograms of PBCB (breadcrust bomb). (a) All parts; (b) Dark part; and (c) Light part.

servations of these rocks including colour (dark 
to light), surface texture (coarse to fine), and 
mineral/crystal content (abundant to few).

All plots at Figures 13 to 15 show nonlinear 
patterns, but these graphs indicate that rocks with 
a lighter colour, smoother surface, and less crystal 
content, will give a higher intensity value. The 
range of mean intensity value for volcanic rocks 
in this study is from 0.16 to 0.24. This value range 
is lower than the other scanned objects measured 
from previous authors (Table 10).

Volcanic rocks in Indonesia generally consist of 
andesitic-basaltic type. Thus, it is assumed that the 
value of its intensity is in the range of 0.16 to 0.19 
(represented by rock sample codes from PBCB up 
to GLBA-2). While TPF is more acidic (dacite) 
and very rarely produced by the recent volcanic 
eruption associated with caldera formation.

The preliminary result of volcanic rock in-
tensity shows that the value is correlated with 
properties of rock surface, indicated by very clear 
colour parameters, surface roughness, and crystal 

*) obtained from histogram
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Figure 12. Histogram of intensity values for some volcanic rocks used in this research.
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Figure 13. Mean intensity values of scanned volcanic rocks 
based on their colours. 
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Figure 14. Mean intensity values of scanned volcanic rocks 
based on surface roughness.
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Figure 15. Mean intensity values of scanned volcanic rocks 
based on crystal contents/impurities.

content. This implies that volcanic rock with 
a lighter colour (lava dacite-andesite), smooth 
surface (non-vesicular), and less crystals content 
(nonporphyritic structure) will reflect a greater 

Table10. Mean Intensity Range of Volcanic Rocks  Compared to Some Types of Scanned Objects

energy (intensity value) against TLS censor.The 
weathering/alteration degree of volcanic rocks 
affects the intensity value. Volcanic rocks that 
have been altered contain more minerals on its 
surface that serve as impurities. These prelimi-
nary assessments of intensity value of volcanic 
rocks show that segmentation/extraction of fresh 
volcanic rock outcrop can well be conducted, 
but for weathered/altered rocks it will be more 
complex. Therefore, it requires a detailed field 
survey to get more description.

The following discussion is about the effect of 
scanned object temperature with intensity value. 
Point cloud sampling on the intensity map was 
applied to thirteen areas that are considered to rep-
resent the range of temperature values. Sampling 
location and the range of temperature values can 
be seen in Figure 16. The mean value of intensity 
for each area is presented in Table 11. Figure 17 

Note: Scanning distance was reatively the same (~3 m); 
          All scanned objects are on dry condition)

Haerani et al. (2016) Litchi and Harvey (2002)
No. Rock code Mean intensity No. Objects Mean intensity
1 PBCB (dark part) 0.1587 1 Red brick 0.25
2 PBCB (light part) 0.1731 2 Limestone 0.39
3 AKB 0.1679 3 White granite 0.35
4 PCDB-1 0.1693 4 Coal 0.17
5 GLBA-1 0.1653 5 Concrete 0.30
6 KKL 0.1893 6 Marble 0.37
7 GA 0.1909 7 Basalt 0.30
8 TPF 0.2410 8 Laterite soil 0.26
9 GLBA-2 0.1853 9 White quartz 0.32
10 PCDB-2 0.1563
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a b

c d

Figure 16. Rock temperature observation around Papandayan Volcano crater and location of point cloud sampling. a). 
Condition of scanning spot. b). Intensity map as the result of scanning process.c). Result from thermal camera capture, and 
d).Explanation for each sampling area.

Box T (oC) Min - max 
intensity

Mean 
intensity

A1 <20 0.0743 - 0.3839 0.2722
A2 0.0861 - 0.7289 0.2572
B1 30 - 40 0.1649 - 0.2980 0.2356
B2 0.0900 - 0.4130 0.2070
C1 40 - 50 0.2116 - 0.2540 0.2313
C2 0.1959 - 0.2970 0.2236
D1

50 - 60
0.2113 - 0.3160 0.2368

D2 0.0841 - 0.5531 0.2233
D3 0.1268 - 0.3729 0.2184
E 60 - 70 0.0748 - 0.3729 0.2374
F1

>70
0.1657 - 0.3991 0.2537

F2 0.1251 - 0.3839 0.2394
F3 0.0756 - 0.3849 0.2438

Table 11. Mean Intensity Value for Each Sampling Area

Figure 17. Plot of mean intensity value and temperature of 
the rocks. It shows a linier trend after 30°C.

shows a graph of relationship between the mean 
intensity with the temperature of the rocks.

Furthermore, Figure 16 shows that the high-
est temperature recorded by a thermal camera 
is 73.8°C and the lowest one is 20.5°C. For the 
calculation purpose, the limit of intensity value 
is taken at 70°<x<20° C. #PC indicates the num-
ber of point clouds (which contains the value of 
intensity) involved in the calculation. Plotting 
results of mean intensity value against tempera-
ture of rock show a positive linear pattern, where 

intensity values increase along with temperatures 
of rocks (Figure 17). However, on the rocks with 
temperature below 20°C, the intensity values 
show a higher level. It can be interpreted that 
within the temperature of 30°C on the object, 
scanning will start to affect the intensity value.

The maximum value of the measured tem-
perature is ± 70°C. In practice, the temperature 
of emission gas holes in the surface can reach a 
higher temperature (200 - 600°C). Maata et al. 
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(1993) conducted a scan on a converter with tem-
peratures of 1050° - 1400° C. The measurement 
results show that the received signal is increased 
by 28% in line with the increase in temperature. 
Thus, the pattern of increase in value of intensity 
against object temperature is linear.

Conclusions

Based on the data obtained, it can be con-
cluded that atmospheric condition and surface 
activity of an active volcano crater (emission 
of volcanic gases) influence significantly into 
TLS range measurement. The application of first 
velocity correction K1 does not provide optimal 
results due to sensitivity of model to temperature 
changes, while the second velocity correction 
(K2) and geometry correction (K3) are not 
significant for a short distance. Correction us-
ing atmospheric delay model gives acceptable 
results, both in terms of correction magnitude 
value (consistent at 3.9 mm) or by dispersion 
phenomena. An atmospheric delay correction 
model gives a better accuracy in terms of 2D 
and 3D position.

Index refraction calculation using Ciddor 
formulation has already accommodated all pa-
rameters, but for applications in volcanic envi-
ronments, it is necessary to find other alternative 
models or a new compiled model that involves 
dominant volcanic gas contents (N2, CO2, SO2, 
H2S, HCl, NH3, and H2O).

The brightness colour of the rock, crystal 
content, and roughness of rock surface affect 
the intensity value, in this case colour param-
eters are more dominant. The measurement of 
intensity values indicates that the volcanic rocks 
of andesitic-basaltic type derived from some 
volcanoes in Indonesia have intensity values 
ranging from 0.16 to 0.19.The temperature of 
the scanned object affects the mean value of the 
intensity recorded by TLS, in this case the mean 
value of the intensity starts to show the pattern 
of increase in temperature of 30° C. An increase 
in the value of intensity then has a linear pattern 
along with the object temperature.
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