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Abstract - Pollen analysis has been conducted on a 90 cm gravity core taken from the Karimata Strait to reveal pollen 
facies in marine sediment and Late Holocene environmental changes in the central Sunda Shelf region. The core site 
is at 32 m water depth and located about 170 km northwest of Bangka Island, Indonesia. Ten samples were collected 
at 10 cm intervals through the core. The total number of pollen grains counted in the samples varies between very 
low (<50 grains) to abundant (>200 grains).  High frequencies (50 - 70%) of mangrove pollen are found at 90 to 40 
cm indicating that pollen facies in offshore marine sediment may be comparable with those in mangrove forest floor 
sediment. The core site has been in a neritic environment since its early deposition ca. 1,800 yr B.P. (~150 A.D.) when 
mangroves vastly grew on the tidal flats of the surrounding islands and they persisted to ca. 700 yr B.P. (~1,250 A.D.). 
In the middle of this period, a catastrophic event speculatively due to the 535 A.D. Krakatau eruption might have 
responsible for the decrease of mangroves and the disappearance of benthic foraminifers. The deposition of silicious 
materials (tephra) due to this eruption might have provided an opportunity for benthic foraminifers to increase their 
population subsequently. From ca. 700 yr B.P. (~1,250 A.D.) mangroves declined, as indicated by lower frequencies of 
pollen grain in samples from 30 cm deep upward. It occurred simultaneously with the deposition of coarser sediment 
and the increase of benthic foraminifer abundance. Interplay of anthropogenic activities, strengthening ENSO cycle, 
and lowering erosion base level might have been responsible for these environmental changes.
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Introduction

The Karimata Strait is located in the centre of 
Sunda Shelf. It connects the Indian Ocean with 
the South China Sea. Monsoonal circulation has 
strong influence in this area resulting seasonal 
variation of wind and sea surface current direction, 

and wet-dry months. Along with topographical 
variation, this variation produces vegetation belts 
due to temperature changes with raising height.   

The Sunda Shelf is sensitive to sea level 
fluctuation due to its bathimetry. It emerged as a 
landbridge, connected mainland Asia to the In-
donesia Archipelago, and formed the Sundaland 
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during the Last Glacial Maximum ca. 18,000 yr 
B.P. when the sea level was about 120 m below 
the present level (Figure 1). On the emerged 
land, river networks had also developed (Kuenen, 
1950), connected rivers from the surrounding 
islands. The widening land during the Last Gla-
cial Maximum has changed the regional climates 
where the monsoonal cycle was weakened and 
hence the precipitation was declined (Walker and 
Flenley, 1976; Flenley, 1985; Stuijts et al., 1988; 
Hope and Tulip, 1994; Kaars, 1998; Wang et al., 
1999; De Deckker et al., 2002; Ding et al., 2013; 
Russell et al., 2014). 

Temperature decrease during the Last Glacial 
Maximum had shifted montane vegetation bound-
aries in the Sunda Shelf region to lower levels 
(Flenley, 1996). On the other hand, lower pre-
cipitation in this period had changed vegetational 
landscape on lowland areas (Bird et al., 2005). 
These environmental changes have been shown 
in pollen records in lakes and wetlands (Biswas, 
1973; Walker and Flenley, 1976; Newsome and 
Flenley, 1988; Stuijts et al., 1988; Hope and Tulip, 

1994; Flenley, 1996, 1998), and marine sediments 
(e.g. Sun and Li, 1999; Yulianto and Dewi, 2000; 
Hanebuth et al., 2000; Sun et al., 2000, 2002; 
Haberle et al., 2001; Wang et al., 2007; Wang et 
al., 2009; Slik et al., 2011; Reeves, 2013; Raes 
et al., 2014). 

Holocene period had no such prominent 
environmental changes in tropical areas due to 
subtle fluctuation of temperature and sea level 
(Flenley, 1996). Precipitation, however, might 
have significantly increased in this period due 
to the onset of ENSO (Moy et al., 2002), and 
hence facilitated an intensive progradation in the 
coastal areas where mangroves abundantly grew 
(Soares, 2009). The increase of civilization might 
have had significant contribution to the changes 
of vegetational landscape due to deforestation for 
dwelling and agricultural purposes. 

Despite many palynological studies in marine 
sediments around the Sunda Shelf concerning 
the LGM period, there was only few studies 
concerning the Holocene period. The Late Ho-
locene palynological record in marine sediments 
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Figure 1. Map showing Sundaland (blue shade area), the core site (black star), and mangrove distribution (dark grey shade). 
The Sundaland is in its general appearance during the Last Glacial Maximum, 18,000 yr B.P., when sea level was at about 
120 m below its present level. This map is compiled and modified from Oo (2004); Sathiamurthy and Voris (2006); Giri et 
al. (2011); Long and Giri (2011); and Solihuddin (2014). 
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of Sunda Shelf region is expected to provide a 
general description of pollen facies in an open 
marine environment, and its relation with the 
subtle climatic fluctuation such as ENSO and 
Little Ice Age (LIA), and catasthropic events such 
as the 535 A.D. and 1883 Krakatau eruptions, as 
well as the 1815 Tambora eruption. 

Materials and Methods

Samples for this pollen study were collected 
from a 90 cm gravity core. The core was taken 
from a site at 170 km northeast offshore of Bang-
ka Island (Figure 1). The bathimetry of the core 
site was about 32 m. The core consists of sandy 
silt (0 - 30 cm) and silt (40 - 90 cm). 

The samples were collected at a 10 cm inter-
val. These samples were treated with standard 
pollen laboratory processing method using fluoric 
acid (HF), chloric acid (HCl), acetolysis (mix-
ing of sulfuric acid/H2SO4, and acetic anhydrite/
(CH3CO)2O, at 9:1 composition, and gravity 
separation using ZnCl2 s.g 2.2. Pollen and spore 
determinations were conducted using a light 
microscope at 400 and 1,000 magnifications to 
species and generic level when it was possible, or 
at the family level. Pollen and spore concentration 
in each sample was counted based on total pollen. 
Pollen assemblages in the samples are classified 
into mangroves, lowland/peatswamp, montane, 
grassland, and pteridophyte spores. The deter-
mined results are presented in a pollen diagram. 

Environmental Setting

The Southeast Asian region has tropical mari-
time climates characterized by high precipitation, 
humidity, and temperatures all year long. The 
average temperatures range 20 - 28o C with less 
than 1o C fluctuation (Ewusie, 1990). The pas-
sage wind, blowing from the tropics of Cancer 
and Capricorn to the Intertropical Convergence 
Zone (ITCZ), has played the main control for 
precipitation across the region. The occurrence of 
the extensive land areas of Asian and Australian 

continents results in the monsoonal cycle due to 
periodic south north shifting of ITCZ. A rainy 
season takes place during December - February 
when the sun is above the tropical Capricorn. 
Wind and surface sea currents move from south-
east to northwest direction in this season. The 
dry season takes place during July - September 
when the sun is above the tropic of Cancer. Wind 
and surface sea currents move from northwest to 
southeast direction in this season. 

The core site is cellected from a shallow ma-
rine environment, located at the centre of Sunda 
Shelf surrounded by several major land areas, i.e. 
Sumatra, Kalimantan, Malay Peninsula, Java, and 
several smaller islands such as Bangka, Belitung, 
and Riau Islands. Mangroves grow intensively on 
the sheltered tidal flats of these islands particularly 
along the north coast of Java, the east coast of 
Sumatra, and almost along the coast of Kaliman-
tan (Figure 1). Recently, however, mangroves in 
these coasts have mostly been deforested due to 
fishery purposes. Tropical lowland, peatswamp, 
submontane, and montane tropical rain forests 
grew widely on these islands prior to intensive 
deforestation since the 20th century for settlement, 
agriculture, or industrial plantation purposes. 
Lowland and peatland tropical forests remain in 
few areas of Sumatra and Kalimantan, particularly 
in the National Natural Reserves, but are almost 
totally disturbed or destroyed in Java. Montane 
tropical rain forests persist in many mountainous 
areas in Sumatra and in patchy areas, particularly 
near the summits of volcanoes in Java. 

Results

There are 43 taxa of 5 species, 31 genera, and 
36 families identified in pollen assemblages of all 
samples (Figure 2). The total number of pollen 
grains in the samples varies from very low (<50 
grains) to high (>200 grains). Among the lowest 
pollen assemblages there are four upper most 
samples (0, 10, 20, 30 cm) and in sample at 60 cm. 

Pollen of mangroves, lowland, peat swamp, 
montane forest, and open vegetation such as 
grassland and spores of pteridophytes are present 
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in frequencies ranging consecutively 11 - 71%, 
20 - 67%, 0 - 25%, and 0 - 22%. Rhizophora, Son-
neratia, and Nypa are among the mangrove pollen 
types that are present consistently in significant 
frequencies. Rhizophora type pollen shows high 
frequencies almost in all samples. Elaeocarpus 
type, Eugenia type, Pandanus, and Acalypha type 
are among the lowland and peatswamp pollen that 
show significant presence in almost all samples. 
Castanopsis type is among the montane pollen 
that shows significant frequencies. Gramineae 
shows the highest frequencies among the pollen 
from open vegetation. 

The pollen diagram can be divided into two 
pollen zones (Figure 2). Zone 1 consists of sam-
ples at 0, 10, 20, and 30 cm, whilst Zone 2 com-
prises samples at 40, 50, 60, 70, 80, and 90 cm. 

High frequencies of lowland/peatswamp pol-
len, particularly Elaeocarpus type, low frequencies 
of mangroves, montane, and grass pollen charac-
terize Zone 1. Pandanus and Verbenaceae are low-
land/peatswamp components that show prominent 
frequencies. Castanopsis sp. and Gramineae are 
derived from montane and grassland vegetation 
that show high frequencies. Among pteridophyte 
spores, Polypodium type, Pteris, and Stenochlaena 
palustris are present in high frequencies. 

High frequencies of mangrove pollen, low 
frequencies of lowland/peatswamp pollen, and 
consistent low representation of montane and 
grassland components characterize Zone 2. Rhi-
zophora type is a mangrove component that is 
consistently present in high frequencies. Elaeocar-
pus type, Castanopsis type, and Gramineae pollen 
are present in prominent frequencies in this zone. 
Fern spores show lower frequencies than those in 
Zone 1, and present consistently along the zone. 

Discussion

Chronology
The sea level fluctuation curve for the last 

20,000 years (Lambeck et al., 2014) indicates 
sea level position at ca -30 m about 10,000 years 
with sea levels rising to a maximum about 5,000 
years ago. This means accommodation space of 

deposition in the core site might have just com-
menced after 10,000 years B.P. This gives an idea 
of a minimum sedimentation rate in the core of 
less than 0.01 cm/yr. 

No absolute dating has been obtained for the 
core. Previous studies show various sedimenta-
tion rates place to place during Holocene in Java 
Sea. Siregar and Dewi (2014) reported a 0.03 
cm/yr of sedimentation rate in Karimata Strait. 
The Holocene sedimentation rate in South China 
Sea varies from 0.01 cm/yr (Sun et al., 2002; 
Wang et al., 2008), 0.02 cm/yr (Wang et al., 
2007), and 0.03 cm/yr (Sun and Li, 1999; Sun 
and Li, 1999; Sun et al., 2000; Hu et al., 2003). 
Holocene sedimentation rates in the eastern Java 
Sea, Makassar Strait, northern Java Sea, south of 
Kalimantan, and offshore of Karimunjawa Island 
is about 0.007 cm/yr (Gingele et al., 2002) and 
0.05 cm/yr (Newton et al., 2011), 0.05 - 0.11 
cm/yr (Herbeck et al., 2014), and 0.0054 cm/yr 
(Hardjawidjaksana, 1990) respectively. Although 
the sedimentation rates in and surrounding Java 
Sea vary from 0.005 - 0.03 cm/yr, they mostly 
vary 0.01 - 0.03 cm/yr. They show a general pat-
tern where high rates occur close to big islands 
and river mouths, and low rates occur at sites 
distant from big islands.   

The core site was located in eastern offshore 
of Sumatra where Musi River flows out to Bangka 
Strait, and separated from the mainland Sumatra 
by Bangka and Belitung Islands. There is no 
prominent rivers flow out from Bangka and Be-
litung Island to Karimata Strait. The core site was 
located in southeast offshore of Kalimantan where 
Kapuas, Kahayan, and Sebangau Rivers flow out 
to Karimata Strait and Java Sea. It was located 
in northwest of Java Island where Citarum and 
Ciliwung Rivers flow out to Java Sea. Materials 
deposited in the core site were probably mostly 
originated from Kalimantan, Sumatra, and Java 
Islands, brought by those rivers. Hence, sedimen-
tation rate of the core site is assumed to have been 
high, about 0.02 - 0.03 cm/yr. This assumption 
leads to a conclusion that the deposition of the 
core commenced at ca 1,800 yr B.P. (roughly 150 
A.D.) and the boundary of Zone 1 and 2 is at ca 
700 yr B.P. (roughly 1,250 A.D.).   
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Pollen Assemblages and Environmental Changes
Pollen assemblages in the samples show that 

pollen and spores were deposited in the core site 
even recently when it was 170 km away from the 
nearest land. The presence of montane compo-
nents such as Castanopsis type, Pinus, and Podo-
carpus shows the pollen sources were not only 
from the nearby vegetation, but also vegetation 
from distant surrounding upland areas. The pollen 
composition, however, indicates the frequencies 
are out of representation of their ecological com-
position in the forests. Consequently, the pollen 
diagram may show vegetational diversity on land 
to some distance, but it could not be used to re-
construct thorough vegetational landscape. This 
is in accordance with the result of pollen facies 
mapping by Lorente (1987).

The occurrence of montane gymnosperm 
pollen may show the role of wind in pollen 
transportation prior to their deposition in the 
core site. Higher angiosperm pollen frequencies, 
however, may show stronger role of water agent 
in transported pollen and spores to the core site. 
Most of the pollen and spores might have been 
disseminated by wind to a short distance prior to 
their farther transportation by rivers to the sea-
land-interface areas where their deposition took 
place. Few pollen and spores might be transported 
and deposited farther seaward by sea currents as 
reported by Kaars (2001). Higher frequencies of 
mangroves than those of other components in-
dicate distance to the pollen sources might have 
played a crucial role of pollen abundance in their 
deposition sites. Pollen composition in the pollen 
diagram probably does not figure out the forest 
composition. Instead, it may represent changes 
in the nearest pollen source, mangroves in this 
instance. Accordingly, mangroves should have 
grown extensively on land areas close to the core 
site at least since about 2,700 yr B.P. Although 
mangroves persist to grow until the present time, 
its abundance might have significantly declined 
since about 500 - 750 yr B.P. 

Very high frequencies of mangroves in the 
middle and base of the core indicate mangrove 
environment occupied the deposition site, or it was 
very close to mangrove environment. In samples 

taken from mangrove forest floor, mangrove pol-
len frequencies were mostly over 50% (Lorente, 
1987; Caratini and Tissot, 1988). The samples also 
comprise pollen of other components, e.g. lowland/
peat swamp, submontane/montane, and grassland, 
including pteridophyte spores. Taking into account, 
the present geographical position and bathimetry 
(more than 30 m deep) of the core site, shallow 
neritic environment should have occupied the site 
since the early deposition of the core ca 1,800 yr 
B.P. The presence of shallow marine benthic fora-
minifers (Dewi, 2014) supports this argument, and 
proves that mangroves have been away from the 
core site when the core was firstly deposited. This 
study shows fifteen genera of benthic foraminifers 
identified in samples were taken from Zone 1. 
Among the prominent ones are Operculina, El-
phidium, Heterolepa, and Quinqueloculina. These 
benthic foraminifers are present very prominently 
in samples of Zone 1 (0 - 40 cm deep), in sample of 
60 - 62 cm (ca 1,200 yr B.P. - roughly 750 A.D.), 
and 80 cm (1,600 yr B.P. - about 350 A.D.). Their 
abundances decline in the samples of 50 - 52 cm. 
They disappear in sample of 70 - 72 cm (ca 1,400 
yr B.P. - roughly 550 A.D.).

Based on the global sea level curve proposed 
by Solihuddin (2014) and Sathiamurthy and Voris 
(2006), accomodation space of deposition should 
have been available since about 10,000 yr B.P. 
when a tidal flat environment probably developed 
in the site. Mangroves might have commenced to 
grow on this flat as they have extensively grown 
since Early Holocene in Southeast Asia region 
(Yulianto et al., 2004). Very high frequencies 
of mangroves (> 50%) in Zone 2 are not an 
indication of mangrove environment. Instead, 
they indicate the abundance of mangroves in the 
surrounding islands. It is thus likely that offshore 
sediments may contain over 50% mangroves 
pollen frequency. Therefore, mangrove domi-
nated pollen assemblages in older sediment rocks 
should be evaluated very carefully.   

Changes of pollen composition from 30 cm 
deep (ca 700 yr B.P.) upward occur simultaneous-
ly with changes of sedimentology and abundance 
of benthic foraminifers. In general, changes in the 
upper part of the core may be simply perceived as 
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a consequence of intensive anthropogenic activi-
ties due particularly to deforestation, including 
mangrove deforestation for various purposes such 
as agriculture and settlement. Increasing frequen-
cies of Gramineae pollen may be interpreted due 
to either extensive planting of rice or extensive 
growing of wild grasses in more open forest 
environments following deforestation processes. 

On the other hand, strengthening ENSO cycle 
has started since Mid-Holocene and reached its 
peak period from ca 2,000 yr B.P. (Moy et al., 
2002). The ENSO onset should have triggered 
higher precipitation during Late Holocene. In 
more open forest environments, higher precipita-
tion and lowest erosion base level due to maxi-
mum sea level drop after the Holocene Maximum 
Transgression (HMT) might enable a higher rate 
of erosion and nutrient-enriched coarser clastic 
material deposition in the sea. Increasing nutrient 
deposition in the sea might have caused a higher 
marine productivity that increased benthic fora-
minifer abundances in marine sediments. 

Another factor that might have played a role 
in sedimentological and micropaleontological 
changes in the upper samples was the catastrophic 
events, i.e. volcano eruptions and tsunamis of 
Krakatau in 535 A.D. (Southon et al., 2013) and 
1883 A.D. (Pararas-Carayannis, 2003), and of 
Tambora in 1815 A.D. These eruptions should 
have deposited more silicious materials of coarser 
grains to the marine environments including in the 
Karimata Strait. The 1883 Krakatau eruption has 
provoked tsunami that reached as far as the Jakarta 
Bay (Simskin and Fiske, 1983), and deposited 
tephra almost throughout the world (Simskin and 
Fiske, 1983). The tsunami reached Karimata Strait 
after about two hours (Simskin and Fiske, 1983). 
The 1815 Tambora eruption had thrown million 
tons of pumice and had covered seas around the 
volcano for years (Oppenheimer, 2011). These 
two volcano eruptions, which occurred in the last 
200 years, have deposited sand-size materials in 
Karimata Strait and its surrounding areas. The 
deposition of this silicious material might also 
have played a role in increasing benthic foramini-
fer population in shallow marine environments. 
In the modern ocean, recolonization by benthic 

foraminifera has been observed in shallow water 
environments following artificial disturbance 
(Ellison and Peck, 1983; Schafer, 1983), and fol-
lowing local volcanic ashfalls (Finger and Lipps, 
1981). In an experiment using recolonization trays 
at an abyssal site in the Panama Basin, Kaminski et 
al. (1988a, b) identified several species of benthic 
foraminifera as opportunistic, including Psam-
mosphaera, Reophax excentricus, and Reophax 
dentaliniformis. The initial stage of recolonization 
of modern deep-sea benthic foraminifera (largely 
by species of Reophax, Subreophax, and a minute 
organically cemented species of Textularia) in a 
vast disturbed habitat on top of the tephra layer 
were deposited in the South China Sea. It is as 
a result of the 1991 eruption of Mount Pinatubo 
in the Philippines reported by Hess and Kuhnt 
(1996) and Hess et al. (2002) that begun three 
years  the eruption. The sampling resolution of 
this study, however, is not likely to obviously 
show this record.

According to the document of “Kitab Raja 
Purwa” the 535 A.D. (it was probably mislead-
ingly written as 416 A.D. in this document), as 
documented by Wichmann (1918), the Krakatau 
eruption had separated Java from Sumatra Islands. 
The magnitude of this eruption, its catasthropic 
impacts, the amount of erupted materials, and its 
tephra thickness were probably much bigger than 
that of the 1883 one. This catasthropic event might 
speculatively have caused the disappearance of 
foraminifers in the sample at 70 - 72 cm and the 
drop of pollen and spore influx at 60 cm. The 
abundant occurrence of benthic foraminifers is in 
the sample at 60 - 62 cm. On the other side, it is 
speculatively caused by the abundant deposition 
of silicious materials of this eruption in Karimata 
Strait. The lapse time onset of foraminifer and 
mangrove responses indicates collateral impacts 
of the eruption to marine ecologies in distant 
areas might have occurred instaneously, and 
those impacts to terrestrial ecologies might have 
occurred lately. 

The chronology of environmental and vegeta-
tion landscape changes in the studied site and its 
surrounding areas from the LGM to the present 
is schematically drawn in Figure 3. 
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Gambar 3. Schematic chronology of environmental changes in Karimata Strait and its vicinity since the Last Maximum 
Glacial. A-B is reconstructed based on results of this study and several references; C-E is reconstructed based on Solihuddin 
(2014): (A) 18,000 yr B.P., sea level dropped to its lowest level about 120 m below the present sea level. Karimata Strait 
and Sunda Shelf emerged and occupied by open forest and savannah (Verstappen, 1975; Morley dan Flenley, 1987; Morley, 
1998, 2000; Gathorne-Hardy et al., 2002; Bird et al., 2005; Wurster et al., 2010); (B) at about 10,000 yr B.P., post LGM 
sea level rise reached -30 m from its present position (Solihuddin, 2014), flooded Karimata Strait partially. The core site 
was in a littoral environment where mangroves were growing; (C) at about 6,000 yr B.P., post LGM sea level rise reached 
its maximum position (Holocene Maximum Trasgression-HMT), sea level position in Sundaland region was about 3 - 5 
m above the present sea level (Tjia et al., 1977, 1983, 1996; Parham et al., 2014), the coastal flat around Karimata Strait 
was flooded and intensively occupied by mangroves, the core site was in a shallow neritic environment; (D) at about 2,500 
yr B.P., the sea level has been at about its present position, mangroves were intensively growing on the tidal flat around 
Karimata Strait, the core was in a shallow neritic environment, deposition of the core commenced; (E) At present, environ-
mental changes started since about 500 - 750 yr B.P. as indicated by the deposition of coarser clastic material in the core 
site, more abundant occurrence of benthic foraminifer, and the decrease of mangrove pollen grain, the core site was in a 
shallow neritic environment. 
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Concluding Remarks

This study shows that pollen and spores were 
deposited in moderate amounts, in the marine 
gravity core taken from a site at 170 km offshore 
in Karimata Strait. The pollen record gives a 
picture of pollen facies in marine sediments 
and Late Holocene environmental changes of 
Sunda Shelf. 

The results of this study show mangrove 
pollen may present over 50% of the pollen as-
semblages in marine sediments that were de-
posited well away from the mangrove forests, 
emphasizing that mangrove pollen can be exten-
sively transported, as first demonstrated by Muller 
(1959) in his classic study of Orinoco Delta pollen 
transportation. Facies interpretation based on the 
abundance of mangrove pollen, consequently, 
should be conducted very carefully. 

The deposition of the core started ca 1,800 
yr B.P. (roughly 150 A.D.) when the core site 
was in a neritic environment as it is recently. At 
this time, mangroves intensively grew on tidal 
flats of surrounding islands and their abundance 
persisted to ca 700 yr B.P. (roughly 1,250 A.D.). 
A catasthropic event that destroyed benthic fora-
minifers and reduced mangroves occurred in the 
middle of this period, probably due to the 535 
A.D. Krakatau eruption. Benthic foraminifers 
responded instaneously to this event, and man-
groves responded later. The deposition of silicious 
materials (tephra) in Karimata Strait due to this 
eruption, however, might have facilitated the 
increase of benthic foraminifer abundance. 

The environmental changes occurred since 
ca 700 yr B.P. (roughly 1,250 A.D.) as indi-
cated by lower frequencies of mangroves in 
pollen assemblage, the deposition of coarser 
sediment, and the increase of benthic fora-
minifer abundance. The interplay of increasing 
anthropogenic activities due to settlement and 
agriculture, strengthening ENSO cycle and its 
collateral consequences, and lowering of erosion 
base level due to maximum sea level drop after 
HMT might have been responsible for these 
environmental changes. 
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