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Abstract - Soil mineral plays an important role in agriculture due to its ability in influencing soil physical and chemical 
characteristics, and therefore is important to be identified. The techniques for identifying soil minerals, such as the 
utilization of a polarization microscope and X-Ray Diffraction (XRD), are often laborious, time-consuming, and costly. 
This study aims to identify and to quantify soil clay minerals by using Hyperion EO-1 imagery and XRD methods, and 
to reveal the effectiveness of using satellite imagery to determine soil minerals. Spectral signatures from Hyperion EO-1 
were extracted in alignment with the soil sampling coordinate locations, and spectral data processing methods such as 
Continuum Removal (CR), and Savitzky-Golay filtering were used to identify and to quantify minerals. The results 
show that hyperspectral analysis revealed distinct spectral absorption features, and it could identify kaolinite, chlorite, 
goethite, hematite, and plagioclase. Meanwhile, XRD analysis confirmed kaolinite and chlorite, consistent with the 
hyperspectral observations. A key advantage of the spectral absorption technique for raw soil was its ability to identify 
not only clay minerals, but also both primary and secondary minerals, such as plagioclase, hematite, and goethite, that 
remain unidentified when using the XRD method with iron removal pre-treatment. Although hyperspectral imagery 
was successful in identifying soil minerals, there are still some limitations that require further refinement, especially 
while conducting quantification. The findings underscored the potential of satellite-based hyperspectral analysis 
as a rapid alternative approach to soil mineral identification that can reduce reliance on laboratory-based methods.

Keywords: remote sensing, hyperspectral imaging, clay identification, soil reflectance, spectral absorption
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Introduction

Clay minerals play a fundamental role in shap-
ing various soil properties. Several characteris-
tics of soils that are influenced by clay minerals 
include cation exchange capacity (CEC), water 
retention, water availability, structural stability, 
bulk density, and porosity (Kome et al., 2019). 
As a key reactive components in soil systems, 

clay minerals influence critical biogeochemical 
processes, plant growth, and soil aggregation 
(Zhang et al., 2021). Given their significant role 
in soil function and plant productivity, accurate 
identification and characterization of clay miner-
als are essential for effective soil management and 
sustainable agriculture. 

Mineral analysis is a crucial step in identifying 
soil clay minerals. Bhat et al. (2024) highlighted 

PUBLISHED IN IJOG



Indonesian Journal on Geoscience, Vol. 12 No. 2 August 2025: 301-318

302    

the importance of analysing soil clay minerals for 
making informed agricultural management deci-
sions. One of the most widely used techniques for 
clay mineral identification is X-Ray Diffraction 
(XRD), which was first introduced for soil clay 
mineral analysis in 1930 (Hendricks and Fry, 
1930; Churchman, 2018). The XRD analysis re-
mains a powerful analytical tool to identify clay 
minerals (Xiao et al., 2023).  However, it involves 
a labour-intensive, multi-step processes including 
raw soil sample preparation, clay particle extrac-
tion, removal of iron oxides, and XRD scanning to 
generate the results (McAlister and Smith 1995). 

In recent decades, researchers have been ex-
ploring more efficient methodologies, leveraging 
statistical approaches and artificial intelligence 
(AI) to improve clay mineral analysis. The ap-
plication of machine learning has seen significant 
advancements, allowing for the development of 
predictive models that enhance mineral identifi-
cation accuracy (He et al. 2024). Additionally, 
satellite imagery and remote sensing technolo-
gies have become increasingly prominent in soil 
research, offering a faster and more cost-effective 
alternative for large-scale mineral analysis.

Remote sensing techniques provide an in-
novative and efficient approach for mapping and 
identifying clay minerals. Altinbas et al. (2005) 
demonstrated that advanced remote sensing tech-
nologies, such as spectral analysis, enable identifi-
cation of clay minerals to be cost-effective. These 
methods utilize sensors on satellites, aircraft, or 
drones to collect spectral data, facilitating large-
scale soil property assessments, even in remote 
or inaccessible regions (Bellinaso et al., 2021). 
Demattê et al. (2016) emphasized that remote 
sensing-derived data can be analyzed for multiple 
purposes, including soil mineral identification and 
moisture assessment. High spatial and spectral 
resolution imagery enhances the precision of soil 
property mapping, enabling extensive agricultural 
areas to be effectively monitored (Garfagnoli et 
al., 2013). Additionally, Ben-Dor (2002) high-
lighted that remote sensing allowed for temporal 
monitoring of soil properties.

In particular, hyperspectral remote sensing has 
shown significant potential for mapping and dis-

criminating clay minerals based on their spectral 
absorption features in the Short Wave Infrared 
Region (SWIR) . However, most applications 
of this technology have focused on geological 
formations, arid zones, or mining regions, rather 
than agricultural soils. Several studies using 
multispectral sensors such as Landsat, ASTER, 
or Sentinel-2 have attempted to map clay content, 
but these sensors lack the spectral resolution 
for distinguishing specific mineral types. For 
example, ASTER could detect clay-enriched 
zones, but failed to quantify montmorillonite 
content below 16 %, and Sentinel-2 showed only 
moderate performance when scaled beyond local 
calibrations (Ducasse et al., 2024).

More promising results have emerged from 
AVIRIS-NG or AISA-FENIX—which success-
fully mapped kaolinite, montmorillonite, and illite 
with reasonable accuracy (R² ≈ 0.62 - 0.70) in 
Brazil and India (Priya and Ghosh, 2022; Nanni 
et al., 2021). However, these studies are highly 
site-specific, often conducted over bare or homo-
geneous soils, and remain rare in humid tropical 
agricultural environments, particularly planta-
tions. Moreover, satellite-based hyperspectral 
platforms such as Hyperion EO-1 or PRISMA 
are still underutilized in this context. Although 
capable of detecting key clay minerals, their 
relatively coarse spatial resolution (30 m) and 
low signal-to-noise ratio result in mixed pixels 
that reduce spectral clarity, especially problem 
in vegetated or heterogeneous farm landscapes.

A further gap exists in the quantification and 
validation of clay minerals using remote sensing. 
While continuum-removal and spectral unmixing 
algorithms are available, their application to soils 
that are often rich in organic matter and moisture 
remains underexplored. Even where clay abun-
dance maps have been generated, few studies 
rigorously validate them against laboratory data. 
Additionally, although proximal sensing methods 
(e.g. Vis–NIR, pXRF) have shown some promise 
in mineral quantification, quantitative models 
for specific clay types are still limited and often 
confined to small, laboratory-based datasets.

In this study, the application of Hyperion 
EO-1 was focused on clay mineral identification 
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and quantification in a tea plantation located in 
Lembang District, West Java Province, Indo-
nesia. This plantation spans approximately 231 
ha, and is situated at an altitude range of 1,323 
to 1,813 m above sea level. Although extensive 
soil characteristic data exists for this area, remote 
sensing-based mineral composition analysis has 
not been conducted. The studied site was selected 
due to its homogeneity in key environmental fac-
tors, including vegetation (tea plantation), climate 
(Agroclimatic Zone A), parent materials (sandy 
tuff), and sloping topography. Understanding 
mineral composition through remote sensing will 
aid plantation management in making informed 
decisions to optimize soil treatment and enhance 
tea production. By utilizing remote sensing 
techniques, this study aims to provide soil clay 

mineral data from satellite-based analysis for 
the alternative to laborious and time-consuming 
techniques.

Data and methods

Studied Area
The study was conducted at a tea plantation 

area located on the southwestern slope of Tang-
kuban Parahu Volcano (Figure 1). This area was 
selected due to homogeneous land use (i.e. tea 
plantation) which can minimize deterioration 
of soil texture determination and clay mineral 
identification caused by various soil manage-
ments applied to them (Figure 2). Based on the 
soil type map on a semidetailed scale (1:50,000) 

Figure 1. Map of the study of location.
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from Indonesian Centre for Agriculture Land 
Resources (CALR) (Sukarman et al., 2016), the 
studied area has been known to have two different 
soil order namely Entisols and Andisols. Andis-
ols covered 38.82 % of the total area, whereas 
Entisols covered 61.18 %. Both soil orders was 
developed from weathering processes of sev-
eral volcanic materials including pumiceous tuff 
(Qyt), lava (Qyl), and sandy tuff (Qyd) based on 
the geological map from Silitonga (1973) (Figure 
1). Rainfall in the studied area falls into “A” ag-
roclimatic zone according Oldeman (1973) with 
the average annual precipitation of 2978.77 mm/
year, consisting of eight wet months without any 
dry month observed.

Data Acquisition
The Hyperion EO-1 hyperspectral imagery, 

developed by NASA, was selected for this study 
due to its capability to capture a broad spectrum 
range from the visible-near infrared (400 - 1,000 
nm) to the shortwave infrared (900 - 2,500 nm) 
(Pearlman et al., 2001). This imagery has 30 m of 
spatial resolution. The image date for this research 
is from acquisition conducted on September 12nd, 
2012, during the transition between the dry and 
wet seasons, based on optimal cloud coverage and 
the availability for the studied area. A total of six-
ty-six bands were excluded due to low sensitivity, 
band overlap, baseline noise, and atmospheric wa-
ter vapour absorption. The remaining bands were 
processed using a stripping algorithm to correct 
pixel noise, followed by radiometric corrections 

to convert at-sensor radiance into surface reflec-
tance. Atmospheric correction was conducted us-
ing The Fast Line-of-sight Atmospheric Analysis 
of Spectral Hypercube (FLAASH) Algorithm in 
ENVI 5.3 software. Figure 3a displays The Google 
Imagery for general land cover reference, while 
Figure 3b shows the EO-1 Hyperion image used 
in this study, highlighting the selected bare soil 
pixels for analysis. 

 
Methodology

The methodology of this study comprised 
several stages, including Hyperion EO-1 image 
selection, soil sampling, laboratory soil analysis, 
and mineral identification. Initially, the appropri-
ate Hyperion EO-1 satellite imagery was selected 
based on factors such as cloud cover, image qual-
ity, and suitability for spectral analysis. Subse-
quently, soil sampling was conducted following 
a systematic approach to ensure representative 
data collection across the studied area.

Once collected, the soil samples underwent 
laboratory analysis to determine their texture 
classification, which served as a basis for min-
eralogical analysis. The identified soil texture 
classes were then utilized to extract spectral re-
flectance data from the Hyperion EO-1 imagery. 
This spectral information was analyzed to identify 
and to quantify the clay minerals present in the 
soil. The overall workflow of the soil mineral 
identification process, including the integration 
of remote sensing data and laboratory analysis, 
is depicted in Figure 4.

Figure 2 Present field conditions of tea plantation cover in the studied area.
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Soil Sampling Method
The soil sampling aims to collect soil from 

the field, for further analysis in the laboratory to 
identify the soil texture, to collect the clay extrac-
tion, and to analyze the mineral with XRD. In 
this study, soil sampling was conducted based on 
covariate space and coverage sampling methods 
(Brus, 2019). Determination of sampling points 
was done using the k-means clustering algorithm 

applied to Hyperion EO-1 satellite imagery 
resulted in four soil sampling locations. This 
method involved segmenting the image pixels 
into clusters that reflect similarities in vegetation 
cover, topography, climate conditions, and parent 
material age. The k-means clustering approach en-
ables the identification of representative sampling 
locations by grouping pixels with similar spectral 
characteristics, thereby improving the efficiency 

Figure 3. Selected pixel locations for spectral extraction over bare soil areas within a tea plantation, as observed in (a) Google 
Imagery and (b) Hyperion EO-1 imagery in true colour, both dated September, 2012.
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and accuracy of soil sampling. Once the sampling 
points were identified, soil samples were col-
lected at each location and subjected to laboratory 
analysis for mineral composition. However, the 
relatively small number of sampling locations may 
limit the ability to capture the full variability of 
soil properties across the studied area. The spectral 
signatures obtained from Hyperion EO-1 were 
analyzed to determine the dominant clay minerals 
present are within the studied area.

Soil Analysis
Soil Textural Determination

The process of determining soil texture in-
volved quantifying the proportions of sand, silt, 
and clay particles, each of which contributes to 
the overall composition of the soil. First, 20 g 
sample of field-moist soil was sieved to remove 
particles larger than 2 mm, as maintaining the 
soil natural moisture helps preserve its structural 
integrity (Poulenard et al., 2003). To break down 

the organic matter present in the soil, hydrogen 
peroxide (H₂O₂) was added to the sample, which 
was then heated in a water bath at 100°C until 
the reaction ceased (Kitagawa et al., 2004). 
Afterward, sodium pyrophosphate (Na₄P₂O₇) 
at a concentration of 0.04 M was introduced to 
facilitate particle dispersion. The sand fraction 
(0.05–2.00 mm) then was separated by using wet 
sieving, while the finer silt (0.002–0.05 mm) and 
clay (<0.002 mm) fractions were isolated through 
the Köhn pipette technique. Finally, the dry 
weight of each fraction was measured, allowing 
for the calculation of the relative proportions of 
sand, silt, and clay to provide a complete picture 
of the soil textural composition. 

Clay Extraction Technique
Clay fraction separation was performed on soil 

samples with silty clay and silty clay loam using 
a combination of wet sieving, gravity sedimen-
tation, and centrifugation techniques, following 

Figure 4. Flow diagram of methodology in this study.
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the method described by Xing and Dudas (1994). 
Soil samples from two different textures were 
chosen due to their clay proportion. The soil ag-
gregate dispersion process was carried out using 
distilled water and a 0.04M sodium pyrophos-
phate (Na4P2O7) solution in a 1,000 ml graduated 
cylinder, followed by an incubation period of 6.5 
hours. The fine clay fraction was then separated 
from the suspension.

To eliminate iron oxide content from the 
fine clay fraction, the samples were treated with 
sodium dithionite solution supplemented with ci-
trate-bicarbonate, a method commonly employed 
for iron oxide removal (Uzarowicz et al., 2011). 
The final separation step involved centrifugation, 
where the fine clay fraction was spun at 5,000 
revolutions per minute for 20 minutes to ensure 
effective isolation of clay particles for further 
mineralogical analysis.

Mineralogical Analyses
Clay Mineral Identification using Hyperion EO-1 
Spectral Response

The pixels in the Hyperion EO-1 hyperspec-
tral image which reflects four soil textures were 
extracted and converted into spectral reflectance 
data to facilitate further analysis. This process 
involved calibrating the raw at-sensor radiance 
values to surface reflectance, ensuring the spectral 
measurements accurately represented the inherent 
properties of the soil. The four reflectances repre-
senting each sample location were then averaged 
based on their texture class similarity. Absorption 
characteristics of the soil minerals were analyzed 
using extracted reflectance data that previously 
had been calculated from the absorbance values 
of each corresponding pixel. 

The spectral response of soil samples was 
analyzed following soil texture classification. 
The spectral reflectance corresponding to each 
soil texture class was extracted to facilitate clay 
mineral identification. Continuum Removal (CR) 
function was employed to normalize reflectance 
spectra, enabling the comparison of absorption 
properties against a baseline (Wadoux et al., 
2021). A continuum removal spectra is a convex 

line fitted over a spectrum reflectance curve, con-
necting its maximum values through straight-line 
segments. Two methods that can normalize the 
spectrum are: additive and division (Clark and 
Roush, 1984). The additive technique maintains 
a constant depth of the spectral absorption curve 
across the wavelength range. CR assigns a value 
of 0 to all spectral regions on the convex hull and 
values between 0 and 1 within absorption bands 
(Wadoux et al., 2021). Essentially, CR enhances 
spectral absorption bands by minimizing bright-
ness variations (Buddenbaum and Steffens, 2012). 
The CR algorithm was applied using the Continu-
um Removal function in the R 4.2.1 prospect pack-
age. Clay mineral identification was subsequently 
conducted by comparing spectral absorption 
features at specific wavelengths with referenced 
spectra from The United States Geological Survey 
(USGS) Spectral Library Version 7 (Kokaly et al., 
2017) and soil mineral spectroscopy studies (e.g. 
Abweny et al., 2016). Basically, CR algorithm is 
derived from the equation x below:

SCR =
S

C
- ..................................................(1)

where:
SCR is continuum-removed spectra, 
S is original reflectance, and 
C is baseline continuum envelope fitted over the 
spectrum. 

The second derivative function was applied to 
the reflectance curve of the continuum-removed 
spectrum to quantify the energy amplitude of ab-
sorption features detected by the sensor (Mendes 
et al., 2021). The amplitude values were then 
used to estimate the proportion of each clay min-
eral present. According to Stevens and Ramirez-
Lopez (2013), the second derivative function can 
be applied using two methods: (1) computing the 
finite difference between consecutive wavelength 
values, and (2) applying the second derivative 
function over a smoothed spectrum using the 
Savitzky-Golay filter (Savitzky and Golay, 1964). 
The latter approach, which involves deriving 
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the smoothed spectrum, was implemented using 
the “SavitzkyGolay” function from the prospect 
package in R (Wadoux et al., 2021). The general 
form of its equation is:

Where: 
Yj is smoothed value at index j, 
yj+i is original data points, 
Ci is convolution coefficients, and 
m is window length in odd numbers.

Clay Mineralogy Using X-Ray Diffraction (XRD)
Clay mineral analysis procedures followed 

American Standard for Testing Materials (ASTM) 
No. E3294-22 standard guidelines for forensic 
analysis of geological materials using X-Ray 
Diffraction (XRD) (ASTM, 2023). The XRD 
scanning was performed using a PANalytical 
X'Pert PRO PW3040/X0 instrument (Malvern 
Panalytical, UK), equipped with a Hybrid Pixel 
detector and a Cu-K target metal wavelength of 
1.54060 Å. Mineral phase analysis was conducted 
using Profex XRD 4.3.6 software (Doebelin and 
Kleeberg, 2015), with diffraction peak matching 
against databases from Profex XRD and Brindley 
and Brown (1980).

Results and Discussion

Soil Textural Determination
Table 1 presents the results of the soil texture 

analysis. The classification indicates two distinct 
soil texture classes: silty clay and silty clay loam. 

Location
Sand Silt Clay

Soil Texture Class
---------------------------%---------------------------

SKW-1 15.15 40.59 44.26 Silty Clay
SKW-2 17.30 51.36 31.34 Silty Clay Loam
SKW-3 13.83 57.23 28.94 Silty Clay Loam
SKW-4 14.40 41.23 44.38 Silty Clay

Table 1. Results of Soil Texture Analysis at Four Sampling Locations (SKW-1 to SKW-4), Showing The Percentage of Sand, 
Silt, and Clay, and the Corresponding Soil Texture Classes

.....(2)

The highest clay content was observed at site 
SKW-4 with 44.3 %, followed by SKW-1 (44.26 
%), SKW-2 (31.34 %), and SKW-3 (29.94 %). 
Sites SKW-2 and SKW-3 were found to contain 
more than 50 % silt, while SKW-1 and SKW-4 
had silt content below 50 %. Sand content varied 
considerably across all four sampling locations, 
but generally remained below 20 %.

Spectral Reflectance Characteristics for Each 
Textural Class

Spectral reflectance analysis provides valuable 
insights into soil texture classification by captur-
ing variations in mineral composition, moisture 
content, and surface properties. The spectral 
reflectance characteristics obtained from Hype-
rion EO-1 imagery reveals distinct differences 
between soil texture classes. The differences in 
the average reflectance values across the Visible-
Near Infra Red-Shortwave Infra Red (VIS-NIR-
SWIR) spectral range for the two identified soil 
texture classes (i.e. silty clay loam and silty clay) 
are illustrated in Figure 5. The most pronounced 

Figure 5. Spectral reflectance indicating higher soil albedo 
in the silty clay loam texture compared to silty clay in the 
SWIR spectrum.
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spectral reflectance separation occurs in the 
SWIR region (1599.2–2536.16 nm), where silty 
clay loam exhibits higher reflectance than silty 
clay. This increased reflectance in the SWIR spec-
trum suggests that silty clay loam contains lower 
moisture content, leading to an enhanced albedo 
effect, particularly at wavelengths between 1,400 
and 1,900 nm (Ben-Dor, 2002). As a comparison, 
vegetation spectral reflectance characteristic is 
very distinct from those from soil textures. The 
vegetated area, in this case tea, have a higher re-
flectance in NIR region (800 ̶ 1,200 nm) and low 
reflectance in SWIR region, whereas soil has the 
opposite reflectance characteristics.

In contrast, within the VIS-NIR spectrum 
(400–1,000 nm), silty clay loam generally ex-
hibits lower reflectance than silty clay, except 
for a noticeable increase between 652.78 and 
691.52 nm. These findings align with Pereira et 
al. (2019), who reported that soils with iron con-
tent exceeding 120 g kg⁻¹ tend to exhibit higher 
reflectance within the ±600 - 750 nm wavelength 
range. The variation in reflectance at these wave-
lengths is strongly influenced by the absorption 
characteristics of iron oxide minerals, both in 
crystalline and noncrystalline forms (Fang et al., 
2018). The presence of water and iron oxides sig-
nificantly affects the shape and depth of spectral 
absorption features, ultimately influencing the 
reflectance properties of different soil textures.

Spectral Absorption Characteristics and Min-
eral Identification

The spectral reflectance extraction from 
Hyperion EO-1 imagery was performed on four 
pixels of silty clay texture and six pixels of silty 
clay loam. To minimize spectral noise, three 
representative pixels were selected for each tex-
ture class. The continuum removal (CR) curves 
of both textures reveal distinct spectral absorp-
tion features (Figure 6). The spectral patterns of 
each texture class exhibited varying absorption 
intensities at different sample points, as indicated 
by the curve colour differences as can be seen in 
Figure 6. The differences in absorption intensity 
are likely due to varying amounts of minerals, 

organic matter, and water, which create distinct 
albedo effects.

The spectral absorption patterns of both 
textures exhibit similarities, with absorption 
features observed in the VNIR (~470 nm, ~700 
nm, ~1,250 nm, ~1,400 nm) and SWIR (~1,500 
nm, ~1,600 nm, ~1,900 nm, ~2,100 nm, ~2,300 
nm) regions. However, notable differences in 
the absorption positions and intensities suggest 
variations in mineralogical composition and 
crystallinity between the two textures. 

Iron Oxides: Hematite and Goethite
Hematite and goethite were identified in both 

soil textures. The goethite absorption feature at 
476.8 nm appears in both silty clay and silty clay 
loam, while hematite absorption occurs at 740.32 
nm in silty clay, but shifts to a shorter wavelength 
(730.56 nm) in silty clay loam. This shift in he-
matite absorption can be attributed to differences 
in charge transfer between ligands (O₂⁻ or OH⁻) 
and Fe³⁺ ions, as influenced by the electronegativ-
ity of the surrounding environment (Elias et al., 
2006). The shorter absorption wavelength in silty 
clay loam suggests a more ionic bond between 
ligands and Fe³⁺, likely due to variations in redox 
conditions and soil formation processes.

The sharper and more symmetrical absorption 
features of both hematite and goethite in silty 
clay loam indicate a higher degree of crystal-
linity than in silty clay. This is consistent with 
findings by Fang et al. (2018), who reported that 
well-crystallized iron oxides exhibit narrower 
spectral absorption features. The differences in 
crystallinity are likely linked to oscillating redox 
conditions, where intermittent anoxic conditions 
facilitate the reduction and leaching of short-
range order iron minerals, leaving behind more 
crystalline forms (Thompson et al., 2006). This 
phenomenon is further supported by the higher 
albedo of the silty clay loam texture compared 
to the silty clay texture, suggesting lower water 
content and more pronounced redox oscillations 
in the former. The findings aligned with recent 
studies emphasizing the influence of soil organic 
matter on the electron transfer and atom exchange 
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processes in iron minerals (Chen et al., 2022b). 
Chen et al. (2022b) demonstrated that soil organic 
matter could significantly modulate the redox 
behaviour of iron minerals, thereby affecting their 
crystallinity. They found that organic matter can 
either promote or inhibit the formation of crys-
talline phases, depending on the specific redox 
conditions and interactions with iron.

Soil moisture also played a key role in the 
formation of these iron oxide minerals. Higher 
temperatures and lower humidity favoured the 
dehydration process, promoting hematite forma-
tion (Schwertmann, 1985). Additionally, soil pH 
significantly influenced hematite precipitation 
from ferrihydrite. Hematite transformation oc-

Figure 6. Mean continuum removal (CR) spectra of silty clay loam (a) and silty clay (b) which shows absorption features 
of minerals such as goethite (Gt), hematite (Hm), plagioclase (Plg) kaolinite (Kt), chlorite (Chl), and organic matter (OM).

cured within pH ranges of 2 - 5 and 7 - 9 (Chen 
et al., 2022a). These pH-dependent changes may 
explain the variations in hematite observed in the 
different soil textures.

Plagioclase and Its Spectral Variations
Plagioclase was identified at 1,267.36 nm in 

silty clay and at 1,277.22 nm in silty clay loam. 
The shift to a longer wavelength in silty clay 
loam is attributed to a higher Fe content within 
the plagioclase structure. Serventi et al. (2013) 
demonstrated that increased Fe content shifts 
plagioclase absorption minima to longer wave-
lengths (1260 - 1270 nm), a phenomenon which 
is also observed in the spectral data. Sadrian et 
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al. (2023) also explained that the shifts in spectral 
absorption are due to changes in the crystal field 
environment around the Fe ions, which alter the 
energy levels of electronic transitions.

Chlorite Variability and Fe Content
Chlorite absorption features were observed at 

different wavelengths in the two textures. In silty 
clay, chlorite absorption appears at 2,311.68 nm, 
2,360.48 nm, and 2,399.52 nm, while in silty clay 
loam, it is detected at 2,282.40 nm, 2,321.44 nm, 
and 2,360.48 nm. The shift to longer wavelengths 
in silty clay indicates a higher Fe content in chlo-
rite. This aligned with findings from Yang et al. 
(2018), who reported that Fe-rich chlorite exhibits 
spectral absorption at longer wavelengths com-
pared to Mg-rich varieties. Based on the observed 
spectral features, the chlorite present in both soil 
textures can be classified as chamosite, the Fe-rich 
variety of chlorite. Abweny et al. (2016) identified 
Mg-OH absorption in clinochlore at 2,245 - 2,325 
nm and Fe-OH absorption in chamosite at 2,261 - 
2,355 nm, supporting the classification. 

The presence of chlorite in the soil suggests 
that the parent material has not undergone inten-
sive weathering. Chlorite is a primary mineral in 
soils, with minor proportions derived from igne-
ous, metamorphic, and sedimentary rocks (Schul-
ze, 2002). In volcanic environments, chlorite can 
originate from hydrothermal alteration of igneous 
and pyroclastic rocks. Utoyo (2007) identified a 
chloritization alteration zone in andesitic rocks 
around The Cupunagara Caldera, located east of 
the studied area, supporting the hypothesis that 
the chlorite detected in this study may have been 
inherited from hydrothermal processes.

Kaolinite Identification in SWIR Spectra
Kaolinite absorption features were identified 

in paired diagnostic bands at 1,355.2 - 1,413.76 
nm and 2,126.24 - 2,184.8 nm in silty clay, and 
at 1,345.44 - 1,404 nm and 2,126.24 - 2,175.04 
nm in silty clay loam. These absorption features 
correspond to hydroxyl (O-H) stretching and 
bending vibrations, characteristic of kaolinite 
(García-Vicente et al., 2021). The presence of 

these absorption bands in the SWIR region (1,000 
- 2,700 nm) confirms the hydroxyl-rich nature of 
kaolinite. Similar findings were reported by Ma-
ñosa et al. (2023), who described these diagnostic 
bands as key indicators of kaolinite presence. The 
absorption features around 2,200 nm result from 
Al-OH bending, while those at 1,400 nm corre-
spond to Al₂OH stretching (Bishop et al., 2017).

Soil Mineral Identification from XRD Pattern
The results of XRD analysis showed the 

presence of kaolinite diffraction peaks from the 
texture observed at d-spacings of 4.31 Å, 3.86 Å, 
3.84 Å, 2.78 Å, and 1.93 Å. as well as chlorite 
(Chl) at 4. 64 Å, 4.62 Å, 3.48 Å, 3.47 Å, 2.69 
Å, 2.68 Å in the surface soil layer of Andisols 
with silty clay texture (Figure 7a) and silty clay 
loam (Figure 7b). Significant differences between 
mineral identification using spectral and XRD is 
that spectral methods could identify another type 
of mineral such as goethite, hematite, and pla-
gioclase. This difference is due to XRD method 
requires iron removal before samples were tested.

Quantification of Identified Soil Minerals
Figure 8 shows that the silty clay and silty 

clay loam textures in the studied area contain 
four main minerals namely goethite (Gt), he-
matite (Hm), kaolinite (Kt), and chlorite (Chl). 
In general, goethite has a larger amplitude than 
hematite. The largest spectral absorption ampli-
tude of phyllosilicate minerals was observed in 
kaolinite compared to chlorite. The greater the 
spectral absorption amplitude, the higher the 
percentage of the mineral present.

The difference in spectral absorption amplitude 
of goethite and hematite minerals depended on the 
type of soil texture, silty clay (Figure 8a), or silty 
clay loam (Figure 8b). In the silty clay, goethite 
showed a spectral absorption amplitude between 
447.52 nm to 457.28 nm, while in the silty clay 
loam, the range was 447.52 nm to 467.04 nm. The 
absorption difference between the minimum and 
maximum values of goethite was 0.56 in silty clay 
and 0.27 in silty clay loam. Hematite, in the silty 
clay, showed an absorption range between 750.08 
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Figure 7. Diffraction peaks of kaolinite (Kt) and chlorite (Chl) from Andisols with silty clay (a) and silty clay loam (b) 
textures.
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nm to 759.84 nm, with an absorption difference of 
0.08. In the silty clay loam, the absorption range 
of hematite was 720.8 nm to 750.08 nm, with an 
amplitude difference of 0.14.

Kaolinite (Kt) and chlorite (Chl) had spectral 
absorption amplitudes in the SWIR spectral range 
in both soil textures (Figure 6). In the silty clay 
texture, kaolinite had an amplitude range from 
2,155.5 nm to 2,165.3 nm, while in the silty clay 
loam texture it was observed having a range 
from 2,136 nm to 2,155.2 nm. The difference in 
kaolinite spectral absorption amplitude between 
its minimum and maximum values was 1.72 in 
silty clay and 1.55 in silty clay loam. Chlorite had 

spectral absorption amplitudes at longer wave-
lengths of 2,292.2 - 2,311.7 nm in the silty clay 
texture and 2,272.64 - 2,292.16 nm in the silty 
clay loam texture with amplitude differences of 
0.30 and 0.58, respectively.

In general, the amplitude range of spectral 
absorption of the two iron oxide minerals was like 
the absorption spectra in previous studies from 
Bahia et al. (2015) and Stenberg et al. (2010). 
The comparison showed that goethite was more 
dominant in silty clay (21.03 %) and silty clay 
loam (12.82 %) (Table 2). Meanwhile, the propor-
tion of hematite was higher in the silty clay loam 
compared to the silty clay (6.80 % vs. 3.00 %). 
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Based on the calculation of the relative composi-
tion of kaolinite and chlorite from the amplitude, 
soils with a silty clay texture had higher kaolinite 
content (64.57 %) compared to silty clay loam 
(61.00 %). In contrast, chlorite in silty clay loam 
texture had a higher proportion (22.68 %) com-

pared to silty clay (11.40 %). Similar relative 
proportions were also observed in the XRD peak 
curves for silty clay and silty clay loam textures 
showing that kaolinite compositions of 95.10 % 
and 21.00 %, respectively, and chlorite of 4.90 
% and 89.00 %, respectively (Table 3). Quantita-

Figure 8. Amplitude of spectral absorption resulting from the application of the second derivative function and Savitzky-
Golay filter of goethite (Gt), hematite (Hm), kaolinite (Kt) and chlorite (Chl) in silty clay textures (a) and silty clay loam (b).

Soil Texture Class
Goethite Hematite Kaolinite Chlorite

------------------------------%------------------------------
Silty Clay 21.03 3.00 64.57 11.40

Silty Clay Loam 10.67 5.66 61.00 22.68

Table 2. Quantification of Clay Minerals and Iron Oxides from Spectral Absorption
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tively, the approach also aligns with earlier work 
showing excellent agreement between spectral 
data and XRD mineralogy. Omran (2017) used 
Hyperion imagery, and found that the soil miner-
als inferred from spectral unmixing were in close 
concordance with XRD results. Similarly, Brown 
et al. (2006) demonstrated that VNIR reflectance 
could predict kaolinite and montmorillonite abun-
dances with ~96 % of samples within one ordinal 
unit of XRD reference values.

Although the clay mineral proportions quanti-
fied from soil spectra resemble the XRD results, 
the method still shows a significant disparity 
compared to XRD quantification. This difference 
arises from the complex mix of minerals and 
other soil substances recorded in the spectra (Ma 
et al., 2024). In this case, the XRD analysis re-
quired pre-removal of iron oxides, meaning goe-
thite/hematite did not appear in the XRD results, 
whereas the spectra clearly detected them. Such 
sample treatments and the fact that hyperspectral 
data sample only the surface (0 - 5 cm) can lead 
to mismatches with bulk (0 - 30 cm) XRD quan-
tification. Previous studies likewise noted that 
spectral data might record phases or mixtures 
(including hydration states and trace organics) 
that differ from laboratory XRD mineralogy 
(Kyziol-Komosinska et al., 2024). Furthermore, 
the relatively small number of sampling locations 
may limit the statistical robustness and spatial 
representativeness of the mineral quantification 
results, potentially underestimating fine-scale 
variability within the studied area. Neverthe-
less, despite this limitation, the findings of this 
study provide valuable updated information by 
confirming that Hyperion EO-1 can serve as 
an alternative tool for detecting soil minerals, 
including those identified by XRD as well as 
minerals not captured by XRD. 

Conclusions

The spectral reflectance analysis using Hy-
perion EO-1 imagery successfully distinguished 
clay texture between silty clay loam and silty 
clay based on their spectral characteristics across 
VIS-NIR-SWIR wavelengths. The most signifi-
cant reflectance separation was observed in the 
SWIR region, indicating differences in moisture 
content and mineral composition. The spectral 
absorption analysis revealed key mineralogical 
differences, with hematite, goethite, plagioclase, 
chlorite, and kaolinite identified in both soil tex-
tures, though their absorption positions varied. 
The XRD analysis confirmed the presence of 
kaolinite and chlorite, but lacked the ability to 
detect iron oxides due to the required iron re-
moval process. The quantification of soil minerals 
showed that goethite was more dominant in silty 
clay, whereas hematite had a higher proportion 
in silty clay loam. These findings highlighted the 
potential of hyperspectral remote sensing for soil 
mineralogical analysis, providing a nondestruc-
tive approach to assess soil mineral composition. 
Future studies should explore integrating hyper-
spectral and geochemical analyses to enhance soil 
characterization accuracy.
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Table 3. Quantification of Clay Minerals Identified from XRD Analysis

Soil Texture Class
Kaolinite Chlorite
-------------------------%-------------------------

Silty Clay 95.10 4.90
Silty Clay Loam 21.00 79.00
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