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Abstract - The Makassar Strait Thrust — Mamuju Segment (MSTM) is a key structural feature influencing uranium (U),
thorium (Th), and rare earth element (REE) mineralization in Mamuju, West Sulawesi. This study explores the relationship
between tectonic deformation, weathering processes, and mineralization, focusing on the Rantedoda sector. Integrated
geomorphic, geological, radiometric, petrographic, and geochemical analyses reveal that MSTM faults act as conduits for
hydrothermal fluids, promoting mineral mobilization, alteration, and enrichment in fault zones. MSTM produced curved
NW-SE to N-S thrusts torn by NE-SW right-lateral strike-slip faults in the studied area. Radiometric data highlight
anisotropic distributions of U, Th, and dose rates aligned with NE-SW and NW-SE fault trends. Geochemical indices
demonstrate that weathering is critical for REE and Th enrichment, as high eTh and low K values indicate. Moreover,
fault-facilitated hydrothermal clay alteration supports U adsorption, as noted by high values of all radiometric parameters
in the area near a fault. These findings establish the critical role of fault systems in controlling mineralization processes,

providing a framework for targeted exploration strategies in tectonically complex terrains of the Mamuju area.
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INTRODUCTION

Background

Nuclear energy is encouraged to be one of Indo-
nesia programmes to fulfill its commitment to Net
Zero Emission (NZE) by 2060 (Kanugrahan and
Hakam, 2023; Permana et al., 2022; Shah et al.,
2024). Nuclear Power Plant (NPP) implementation
in the Indonesian electricity system simulation
showed that NPP could significantly satisfy the na-

tion electrical energy needs while simultaneously
reducing CO, emissions, given the limited imple-
mentation of other low-carbon, renewable energy
sources like hydro, geothermal, solar, and wind
power (Rahmanta et al., 2023). Other simulations
noted that NPP would contribute the most to the
nation energy share among all renewable energy
sources (Permana ef al., 2022). Those findings on
the importance of NPP deployment also imply the
importance of nuclear energy system development,
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including the development of the raw nuclear ma-
terials that will emerge as strategic commaodities.
Indonesia's raw nuclear materials are available
from uranium and thorium deposits in Kaliman-
tan, Sulawesi, Sumatra, Papua, Bangka-Belitung,
and The Riau Islands (Syaeful et al., 2021). Par-
ticularly in Sulawesi, the Mamuju area of West
Sulawesi has volcanogenic-type deposits in The
Adang Volcanic Rocks (Mu’awanah et al., 2019;
Rosianna et al., 2020, 2023; Sukadana et al., 2015,
2021). The Adang Volcanic Rock magma is highly
alkaline, ranging from sodic to ultrapotassic. It has
a diverse magma series, including tholeiitic, calc-
alkali, high-K calc-alkali, and shoshonite magmas.
Based on geochemical data, the rocks are basaltic
trachyandesite, trachyandesite, andesite, teph-
riphonolite, and trachyte (Syaeful et al., 2014).
Highly naturally occurring radioactive materi-
als (NORM) have been identified coming from
The Adang Volcanic Rock, contributing to Mamu-
ju highest average dose rate in Sulawesi and even
Indonesian regions, which can reach 2,800 nSv/h,
(Syaeful et al., 2014). The isotope characterization
reveals the 2*U and #*Th concentrations of laterite
and rock of the area to be 22,882 and 33,549 Bg/kg
on average (Rosianna et al., 2023). The Rosianna
et al. (2023) study also shows that equilibrium
uranium is further remobilized, interpreted as
influenced by groundwater and the reduction-
oxidation environment. There are two types of
uranium and thorium mineralization in Mamuju:
volcanic and lateritic deposits. The volcanic de-
posit can be distinguished into strata-bound and
structure-bound deposits (Rosianna et al., 2023;
Sukadana et al., 2016; Syaeful et al., 2024). The
primary radioactive minerals identified in Mamuju
are davidite and thorianite, while the secondary
minerals are gummite and autunite. SEM-EDS
Point analysis in thorianite mineral shows 1.16
wt. % and 31.14 wt. % for uranium and thorium,
respectively (Sukadana et al., 2016). Investiga-
tion in weathered volcanic rock in Mamuju area
showed a strong indication of the REE-rich min-
eral of zircon with values ranging from 567 —6400
ppm in the weathering profile of the phonolitic
leucitite rock, specifically in Kelapa Tujuh and
North Botteng Villages (Ritonga et al., 2021). The
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Geochemical analysis on veins in Hulu Mamuju
area shows several Th and REE-bearing minerals
of britholite, aeschynite, monazite, chevkinite-Ce,
thorite, and thorutite (Sukadana et al., 2022). The
samples are altered, and Th content is elevated
to 7.4 %, while total REE content is elevated to
4.8 %. Radiometric analysis also shows enrich-
ment of Th in the altered and weathered region of
Adang Volcanic Rocks in Mamuju (Sukadana et
al., 2021; Syaeful et al., 2014). Adang Volcanic
Rock is among the rock formations affected by
the presence of The Makassar Strait Thrust (MST)
in the west (Guntoro, 1999; Puspita et al., 2005).

The MST segment west of Mamuju is
The Makassar Strait Thrust Mamuju Segment
(MSTM) (Meilano et al., 2023; Serhalawan and
Chen, 2024). The MST is active and contributes to
the higher crustal strain rate of Mamuju and Majene
relative to their surrounding areas, causing a dam-
aging earthquake in 2021 (Meilano et al., 2023). A
remote sensing analysis indicated that the SE-NW
lineament system in Mamuju controlled volcano
distribution and U-Th mineralization based on
their similar distribution (Indrastomo et al., 2017),
yet how the identified lineament system influences
the mineralization remains unclear. The MSTM
contribution to uranium mineralization in Mamuju
needs to be discussed to address any implications
for the exploration programme. This work cov-
ers that topic by integrating geology, geophysics,
and geochemistry of a sector in Mamuju as a case
study to fill the gap in research. Rantedoda Sector
is one of the areas with the radiometric anomaly
in Mamuju (Sukadana et al., 2021). A further
study reveals higher U content of samples from
this sector up to 0.09 wt. % UO,, 0.13 wt. % ThO,,
and 1.21 wt. % total REE content (Pratiwi et al.,
2024). This sector was chosen for the case study,
because it had high levels of U, Th, and REE in a
region affected by MSTM activity that led to the
formation of a thrust belt known as The Mamuju
Thrust Belt (MTB), characterized by numerous
structural features.

Geological Settings
The tectonic setting of Sulawesi is built by
the interactions among three major plates: The
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Eurasian Continental Plate, The Oceanic-Con-
tinental Indo-Australian Plate, and The Oceanic
Pacific-Philippine Sea Plate. Tectonic events
from The Late Mesozoic to The Cenozoic created
four tectonic provinces, namely The Western-
Northern Sulawesi Magmatic Arc (comprising
south, west, neck, and north arms), The Central
Sulawesi Metamorphic Belt, The East Sulawesi
Ophiolite (east arm), and The Banggai-Sula and

Buton-Tukangbesi Microcontinental Fragments
(Maulana et al., 2016). This study is located in
the West Sulawesi region, as illustrated by Figure
la, which is currently developed as a fold-thrust
belt with active seismicity (Meilano et al., 2023).

The tectonic evolution of the West Sulawesi
region began in The Late Cretaceous when The
East Java—West Sulawesi Block was accreted to
the margin of Sundaland (Hall and Sevastjanova,
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Figure 1. (a) Regional structural map of the West Sulawesi region (northern part: about 0°50°0°S to 2°30°0°S; southern part:
approximately 2°30°0°S to 3°30°0°S) and (b) Geologic map of the southern part of the West Sulawesi region. The maps are
modified after Bachri and Baharuddin (2001), Calvert and Hall (2007), Coffield ez al. (1993), Ratman and Atmawinata (1993).
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2012). A west-dipping subduction zone then
developed east of the West Sulawesi region (e.g.
Moss and Chambers, 1999; Elburg ef al., 2003;
Hall and Sevastjanova, 2012). The rollback of
this subduction zone caused the rifting of The
Makassar Strait Basin, and the West Sulawesi
region moved away from Kalimantan starting in
The Early Eocene (Guntoro, 1999; Hall and Sev-
astjanova, 2012; Simandjuntak, 1986). From the
Middle to Late Eocene, the West Sulawesi region
underwent a syn-rift phase that included terres-
trial, transitional, and marine environments. The
marine post-rift phase began in The Oligocene
(Calvert and Hall, 2007; Coffield et al., 1993).
The subduction-related magmatism in the West
Sulawesi Region stretched from The Paleocene
to The Early Miocene (e.g. Polvé et al., 1997;
Elburg et al., 2003; Leeuwen and Muhardjo,
2005). Extension-related magmatism developed
from The Middle Miocene to The Late Pliocene
(Elburg et al., 2003; Hennig et al., 2016). During
The Pliocene, the extension-related magmatism
developed simultaneously with metamorphism
(Hennig et al., 2017). The West Sulawesi region
underwent a major tectonic uplift in The Plio-
Pleistocene by the formation of the fold-thrust
belt (Calvert and Hall, 2007; Coffield ez al., 1993;
Leeuwen and Muhardjo, 2005).

Present-day structural features of the West Su-
lawesi region, as shown in Figure 1a, are inverted
half-graben and fold-thrust belts that developed
due to the Plio-Pleistocene compressional defor-
mation (Calvert and Hall, 2007; Coffield et al.,
1993; Leeuwen and Muhardjo, 2005; Puspita et
al., 2005; Raharjo et al., 2012). In the northern
part of the region, the NE-SW half-graben system
and NW—SE transfer faults were subjected to
inversion (Calvert and Hall, 2007; Raharjo et al.,
2012). Folds in the area are trending in the N—S
direction, and the mountain fronts in the northern
part of the region are thrust-related (Calvert and
Hall, 2007). The fold-thrust belt in the southern
part of the region, as depicted by Figures 1a and
1b, changed its trend into an N—S direction, and
it showed imbricating geometry (Coffield et al.,
1993). The 2021 Mw 6.2 earthquake in Mamuju
showed that the southern part of the region was
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related to thrusting along the east-dipping fault
plane (Meilano et al., 2023).

Stratigraphy of the Mamuju area is composed
of a distribution of volcanic rocks and marine
sedimentary rocks (Ratman and Atmawinata,
1993). The constituent rocks of this area from
the oldest are The Middle Miocene — Pliocene
Talaya Volcanic Rocks, The Middle Miocene
— Late Miocene Adang Volcanic Rocks, The
Middle Miocene — Late Miocene Mamuju
Formation limestone with its Late Miocene
Tapalang Member limestone, and The Holocene
coral limestone and alluvial deposits. The Adang
Volcanic Rock comprises trachyte-phonolite
rocks with ultrapotassic magmatic affinity from
an Active Continental Margin (Sukadana et al.,
2015). The Adang Volcanic Rock also can be
divided into several volcanostratigraphic units
based on their volcanic features (Indrastomo
et al., 2015; Sukadana, 2023; Sukadana et al.,
2015), as shown in Figure 2. The researched
area is Rantedoda Lava, Takandeang Lava, and
Limestone units.

METHODS

In this research, a geomorphic analysis desk
study was done using a NASA Digital Eleva-
tion Model (NASADEM) image to identify the
structural features of the area, and to guide the
fieldwork. The NASADEM was created from
the Shuttle Radar Topographic Mission (SRTM)
reprocessing (Crippen et al., 2016). In generating
NASADEM, the vertical control of SRTM was
improved with ICESat (Ice, Cloud, and Land
Elevation Satellite) elevations, a precise eleva-
tion gained from laser altimetry techniques. The
voids on the predecessor were filled with The
Advanced Spaceborne Thermal Emission and
Reflection Radiometer Global Digital Elevation
Model (ASTER GDEM) (Crippen et al., 2016).
The geomorphic analysis was conducted by ob-
serving the geomorphic expressions size, shape,
arrangement, and textures. This observation led
to identifying landform types and lineaments and,
thus, to interpreting structural features.
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Figure 2. Geological Map of Mamuju area (modified from Rosianna ef al. (2023) and Sukadana (2023).

The fieldwork comprised (1) geological obser-
vation and mapping to obtain lithology and struc-
tural geology data, (2) rock and soil sampling for
geochemical analysis and petrographic analysis
of the rock samples, and (3) radiometric mapping
for videography and anisotropy analysis of the
radionuclides. A structural geological analysis
of the fieldwork was done to confirm the geo-
morphic analysis. Fault slip data were collected
and analyzed using the open-source WinTensor
(Delvaux and Sperner, 2003) downloaded from
https://damiendelvaux.be/Tensor/WinTensor/
win-tensor.html to determine the fault’s type
and kinematics.

Rock samples were taken from a chip sam-
pling using a geological hammer and a portable
hand drill. Meanwhile, soil samples were obtained
from the soil strata above the bedrock, free of
plant organic components. The geochemical
analysis was performed with Energy Disperse
X-ray Fluorescence (ED XRF) Spectro XEPOS
in the BRIN laboratory for twenty-five rock

samples and fourteen soil samples representing
different lithologies. Geochemical analysis for
major elements using the XRF method has been
conducted by several researchers in geochemistry
within the exploration of rare earth mineral depo-
sits (Hartiningsih et al., 2022; Odigo et al., 2023;
and Winarno et al., 2023). Eight samples Eight
samples were for petrographic analysis with the
same representation purpose as the geochemical
analysis.

Several indices were used to infer the rock
weathering degrees: Lost on Ignition (LOI),
Chemical Index of Alteration (CIA), and Index
of Lateritization (IOL). These indices are calcu-
lated based on major element concentration in the
weathered products. Chemical Index of Alteration
(CIA), noted as (1), was used to evaluate the for-
mation of clay minerals from feldspars.

CIA = [AL,0;/(Al,0; + Ca0 + Na,0 + K,0)] x 100 ...(1)

where oxides are expressed in molar propor-
tions.
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Index of Lateritization (IOL), expressed as
(2), measured the degree of lateritization in ex-
treme weathering conditions, which CIA cannot
accurately measure.

I0L = [(AL, 05 + Fe,05)/(Al,05 + Fe,05 + Si0;)] x 100 ...(2)

The radiometric mapping was retrieved from
a GPS-linked RS-125 gamma spectrometer car-
ried by the moving person and measured the
concentration of radionuclides in 1-minute in-
tervals. The variography and anisotropy analysis
of the radiometric data was done using ArcGIS,
followed by kriging interpolation to make radio-
nuclides distribution maps. All the data were then
synthesized to identify the relation between the
MSTM-contributed structural features of Rant-
edoda to the U, Th, and REE enrichment and their
implication on the exploration strategies.

RESuULT

Geomorphic And Fault Slip Analyses

The studied area shows mountainous and low-
relief terrains separated by thrust-related mountain
fronts (Figure 3a). The elevation ranges from sea
level to 888 m. The mountainous terrains show
rugged and mottled topographic features (Figure
3a), as the former is underlain by Takandeang
volcanic breccia and Takandeang Lava, while the
latter is underlain by limestone (see Figure 2). The
smooth, low-relief terrains correspond to alluvial
(see Figure 2). The main structural features of the
thrust-related mountain fronts are curved NW—SE
to N-S thrusts torn by NE-SW right-lateral strike-
slip faults (Figure 3a). The NE—SW right-lateral
strike-slip faults (S1, S2, and S3) accommodate
changes in the trend of the NW-SE to N-S thrust
faults (T1, T2, and T3). Thrust occurring in this
studied area displays imbricating geometry. The
T1 and T2 Thrusts are the main faults, while the
others occur as backthrusts. The T1 and T2 Thrusts
form the mountain fronts, and the backthrusts are
expressed as thrust valleys (Figures 3a to 3¢). On
the other hand, the right-lateral strike-slip faults
are arranged subparallel to each other. Geomorphic
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expressions of the strike-slip faults are fault ridges
(The S3 Fault) and linear fault valleys (The S1, S2,
S4, and S5 Faults). Due to the heavily weathered
outcrops, limited fault planes are preserved for
structural analysis. However, field structural data
acquired in the S4 Fault (a and b stations of Figure
3a) show NE—SW right-lateral strike-slip faults
formed due to WNW-ESE compression (Figures
4a and 4b). Hot springs are found in a river and
slopes. They are found near the S1 and T3 Faults
and are interpreted to be related to the faults. The
example of a hot spring located in the c station of
Figure 3a is depicted in Figure 4c.

Stratigraphy

Geological observations resulted in the distri-
bution of rock units in the researched area being
divided into four units: Tasipa Lava, Rantedoda
Lava, Sandstone, and Limestone. Rock and soil
sampling was performed in Tasipa and Rant-
edoda Lavas, the host rock of volcanogenic-type
mineralization. The geological map and sample
distribution are displayed in Figure 5.

Tasipa lava appearance in the field is generally
fresh, while the altered outcrops are found in the
north and northeast. The example of the Tasipa lava
outcrop is depicted in Figure 6a. It is a porphyro-
aphanitic foiditoid rock with phenocrysts that
include leucite, biotite, pyroxene, and hornblende
(Figure 6b). The Rantedoda Lava has several dome
features, as observed from the circular features
in the DEM (Figure 5). These units have flowing
structures, auto breccia, and sheeting joints (Figure
6¢). It also consists of foiditoid rocks with a min-
eral composition of leucite, biotite, and pyroxene.
It has a porphyro-afanitic to porphyro-phaneritic
texture (Figure 6d). However, it has a relatively
smaller phenocryst than The Tasipa Lava.

The Sandstone Unit consists of sandstone, clay-
stone, conglomerate, and coal are found around
the valley in the northwest and southwest. The
boulders of the conglomerate measuring 5 - 30 cm
with closed packs were discovered at this location
(Figure 6e). Contact outcrops between the Tasipa
Lava unit and the conglomerate layers are found
in the studied location, northern part of the studied
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Figure 3. (a) Structural map, (b) elevation profile, (c) three-dimensional view of the studied area (MF: mountain front; TV:

thrust valley; FR: fault ridge; LFV: linear fault valley).

area (Figure 6f). Layers of grey sandstone with
fossilized shell material as a matrix were found
on claystone layers found predominantly at the
studied site, as examples in Figure 6g. Coal seams
were also found at two locations southwest of the

researched location on the Rantedoda branch of the
river. At least two locations of coal outcrops were
found in the river fork (Figure 6h). The limestone
unit found in the southwestern part of the studied
site is close to the morphology of the lowlands in
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Rantedoda Village. The unit consists of reef and
clastic limestone that grow on the claystone and
The Tasipa Lava (Figure 6i). The limestone has
been undergoing a diagenetic process at several
places that producing crystalline limestone.

Petrographic Analysis

Among eight volcanic rock samples, four
samples were taken from The Rantedoda Lava
Unit (RDD 17, RDD 18, RDD 5, and RDD 1),
and four samples were from The Tasipa Lava Unit
(RDD9,RDD 12,RDD 15,and RDD 41). Based
on petrography observation, the general mineral-
ogy of all the samples is closely identical. The
phenocryst and groundmass predominantly are
feldspathoid minerals such as leucite, pyroxene,

biotite, alkali feldspar, and volcanic glass. Vol-
canic rocks from the researched area do not have
any quartz content, which indicates that these
rocks have a low level of silica saturation. Based
on mineral composition, all the volcanic rocks in
Rantedoda are Foidit (Table 1). Some examples
of the photomicrograph showing petrographic
textures of the sample can be seen in Figure 7.
The rock samples show porphyritic texture,
with a skeletal texture very common in leucite
mineral groundmass. Porphyritic texture indicates
at least two crystallization processes: phenocryst
crystallization occurs first, producing larger min-
erals, and then the groundmass crystallization
process produces finer minerals. Skeletal texture
indicates the crystal mineral develops under
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Table 1. Mineralogical Composition of Lava Rock from Rantedoda Area

Phenocryst Composition (%)

Groundmass Composition (%)

Code Lithology
Leu Px Alf Bt Leu Px needles Glass
RDD 17 5 5 - - 85 5 - Foidit
RDD 18 3 3 - 10 75 10 - Foidit
RDD 1 10 5 - - 75 10 - Foidit
RDD 5 5 5 3 3 50 34 - Foidit
RDD 9 35 20 5 5 10 - 25 Foidit
RDD 12 25 15 - - 45 15 - Foidit
RDD 15 35 20 5 - 20 - 20 Foidit
RDD 41 5 5 - - 45 35 10 Foidit

Leu: Leucite, Px: Pyroxene, Alf: Alkali Feldspar, Bt: Biotite

Figure 7. Skeletal texture observed in leucite mineral from (a) RDD 1 and (b) RDD 12, (¢) and (d) photomicrograph
of foidit lava from Rantedoda Unit, (e) and (f) photomicrograph of foidit lava from Tasipa Unit. Abbreviation: Lc: leucite,

px: pyroxene, bt: biotite, alf: alkali feldspar, chl: chlorite.

conditions of rapid growth and a high degree
of supersaturation. The difference between The
Tasipa Lava Unit and the Rantedoda LavaUunit
can be seen from the size of the phenocryst, per-
centage, and the composition of the groundmass.
The Tasipa Lava Unit has bigger phenocrysts and
more phenocryst content than the Rantedoda Lava
Unit, and the presence of glass groundmass in The
Tasipa Lava Unit also differentiates it from The
Rantedoda Lava Unit. Some of the samples show
evidence of weathering/alteration, clay masses
(brown-black in thin sections) are observed in the
groundmass of the samples (e.g. in RDD 17, 18,
1, 5,9, and 15), zeolite is observed growing in
vesicles (e.g. in RDD 15 and 41), and chlorite is

328

observed in groundmass and fracture of minerals
(e.g. in RDD 1, 12, and 15). Calcite was found
growing in fracture (e.g. in RDD 15).

Geochemistry

About thirty-nine rock and soil samples from
different units were collected. Major and trace
element measurements were done using X-ray
fluorescence. The XRF result for rock samples
from the studied location has a SiO, content range
from 44.09 - 60.27 wt. %, which means the rocks
belong to the basaltic—intermediate group. The re-
sults from various diagrams are shown below
to classify the Rantedoda and Tasipa Lava groups,
and to explain their tectonic environment. Based
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on Winchester and Floyd (1977) rocks samples
from Rantedoda Lava and Tasipa Lava belong to
basanite-trachybasanite, phonolite, and trachyan-
desite (Figure 8a), with magma affinity range from
calc-alkaline series to shosonitic series (Peccerillo
and Taylor, 1976) (Figure 8b). Rantedoda and
Tasipa Lava groups show high alkalinity, ranging
from calc-alkaline to shosonitic. Rocks with high
alkalinity are usually found in tectonic settings

related to continental crust, further away from the
trench, and rarely in early subduction processes
(Pearce and Cann, 1973; Winter, 2014).
Tectonic setting determination using Th-
Zr/117-Nb/16 diagram, depicted in Figure 9a
(Wood, 1980), suggest that both Rantedoda and
Tasipa Lava groups was formed in the Arc Basalt
Environment. On Z1/Y vs Zr diagram, displayed
in Figure 9b (Pearce, 1983), both of the groups
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plotted on Continental Arcs. La/Yb vs Nb/La
and La/Yb vs Th/Nb diagrams on Figure 9c and
9d (Kurt Hollocher et al., 2012) show that rocks
from the studied area are dominantly plotted as
an alkaline arc with some samples plotted as a
continental arc. Based on geochemical character-
istic above, rocks in the thestudied area indicate
that they were formed in a continental margin
transitioning from subduction to late-subduction
environment.

The rock samples used in this study have been
weathered to different degrees. Thus, all of the
data have high Loss on Ignition (LOI) values; the
LOI values of the rock samples range from 2 —
10 wt. %, and the LOI values of the soil samples
range from 13 — 21 wt. %. The geochemical
analysis was carried out on the main and trace
elements, considering trace elements had more
immobile properties even though the rock had
experienced weathering.

The CIA values in Tasipa Lava Unit range
from 17.12 t0 99.39. In the weathering rocks CIA
values under 60 suggest lower weathering, 60—80
is moderate weathering, and more than 80 is ex-
treme weathering samples from this unit. Thus
plotted using A-CN-K ternary diagram (Figure
10a), the soil fell under extremely weathered and
the plot gathered at A1203 peak, which could be
linked to the presence of clay mineral in the soil

(Fedo et al., 1995; Nesbitt and Young, 1982).
The IOL value ranges from 24.55 to 58.32. The
progression from foidit rock to soil can be seen in
Figure 10b, which depicts loss of Si and enrich-
ment of Fe and Al during the lateritizion. Some
of the soil was placed in kaolinitization stage, and
some in weakly lateritization stage (Babechuk et
al., 2014; Schellman, 1981).

The SiO2 content in the rock and soil in Tasipa
Lava Unit is considerate low ranging between
28.59 to 57.29 wt. %, CaO ranges from 0.004 to
10.22 wt. %, Na20 ranges from 0.00 to 9.42 wt.
%, K20 ranges from 0.03 t010.11 wt. %. These
four show decrease from the rock to soil. A1203
ranges between 7.11 to 22.10 wt. %, and Fe203
ranges between 8.09 to 25.34 wt. %. They both
increase from rock to soil. The decrease of silica,
natrium, potassium, and calcium. The increase of
aluminum contents from rock to soil display the
formation of clay mineral from the weathering of
feldspathoid, the high Fe203 content in the soil
indicates that the clay formed could be Fe-rich
clay or the soil is high in iron oxide minerals.

The total REE content in rock and soil in Tasipa
Lava Unit ranges from 1077.80 to 7833.60 ppm,
Th ranging between 204.30 to 883.60 ppm, and U
ranging from 46.30 to 189.10 ppm. Th is enriched
in weathering product, meanwhile U shows ir-
regular trend (Figure 11a and 11b). Among REE
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Figure 11. Selected element vs weathering indices: (a) U, (b) Th, (c) Total REE (TREE), and (d) Ce.

detected in these samples (Figure 11c), only Ce
shows enrichment during weathering (Figure 11d),
while the other shows irregular trends.

Radiometric Data Analysis

The variography analysis shows anisotropy in
eU, eTh, and dose rate data in the NE-SW direc-
tion. For K data, however, it has not detected
anisotropy as the range in all directions is the
same. Hence, an omnidirectional experimental

variogram was used for K data, while the other
used a directional experimental variogram. The
variogram was then modeled with a spherical
and nested spherical variogram model. The
variogram models are depicted in Table 2 with
their corresponding variogram maps. The results
are displayed in Figure 12, with an overlaying a
geological map.

The radiometric maps of Rantedoda reveal
how the structural features affected the distribu-
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Table 2. Variogram Modes of Each Parameters And Their Corresponding Variogram Maps

Range (a) Variogram maps
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Parameters Model Type Effect (C,)
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Figure 12. Kriging Result of each parameter with overlaying geological maps and structural features.

tion of K, eU, eTh, and dose rate values. It is
also backed up by the anisotropic detected on the
variogram maps of eU and eTh that follow the
strike-slip faults trend of NE—SW. Meanwhile,
the lithology does not comply with the radiomet-
ric map, except for the limestone unit, where all
radiometric parameters show lower values. The
high value of all radiometric parameters occurs in
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the southern part of the studied area near the T2c
thrust fault. For K, the high radiometric value is
limited near the T2c thrust fault, while for eU, eTh,
and dose rate, the high radiometric value extends
to the east. Moreover, the eU case follows the
S5 strike-slip fault. The radiometric value trend
that elongated along a fault was also observed in
several locations. The K value is high along the
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S4 strike slip-fault, while the opposite is observed
in the eTh distribution. This phenomenon is also
observed in the uphill of Tasipa region, between
S1 and S4 fault. The eU, eTh, and dose rate values
also seem bound to the T3 thrust fault, while there
is only a slight increase in value for the K case.
High values along the S1 strike-slip fault are seen
on K and eU, whereas noncontinuous increasing
values are detected in eTh and dose rate along the
fault. The higher values of eU were also spotted
near hot springs along the S1 strike-slip fault, and
T3 thrust fault. This case has somehow faded on
dose rate distribution, but the values are still high.

DISCUSSION

The results of The Rantedoda and Tasipa
Lava Groups are similar to other volcanic rocks
found in the Mamuju area. Volcanic rocks from
Tapalang, Ampalas, Malunda, and Adang Com-
plexes show the same magma series ranging from
calc-alkaline to shoshonitic series, formed in
subduction-related settings, with magma forma-
tion strongly influenced by the continental crust
(Draniswari et al., 2020; Sukadana et al., 2015).

The geomorphic analysis, supported by
ground checking of structural features, indicates
that MSTM strongly contributed to the deforma-
tion of the studied area. The anisotropic distribu-
tion of radiometric parameters in NE-SW and NW
-SE directions align with the fault trends, confirm-
ing structural control. Faults add a weak plane to
the earth's surface, facilitating water movement.
The interaction between water and rock below
the surface may alter the composition, leading
to the alteration and exogenic processes such as
weathering and erosion. This is what happened
to the volcanic rocks of Rantedoda. The deforma-
tion affected the radiometric distribution, but it
is not the only factor controlling the U, Th, and
REE enrichment, as weathering also plays a role.

The geochemical behaviours of K, U, and Th
in soils are governed by complex interactions
involving mineralogy and environmental condi-
tions. The U is relatively more mobile than Th and
K. Under oxidizing conditions, U is more soluble

and mobile, contributing to its redistribution in
soil profiles, and conversely, it will precipitate
and become immobile in reducing conditions
(Omel’yanenko et al., 2007; Veerasamy et al.,
2020). On Rantedoda a high content of eU was
noticed near the hot spring controlled by faults,
such as the S1 strike-slip and T3 thrust faults. This
suggests an outflow of subsurface water contain-
ing leached U from the volcanic rocks where faults
become pathways, that further facilitate uranium
transport into hot springs. Elevated U content from
the leaching of surrounding rock where fault zones
and weathering are heavily present is a common
phenomenon, such as in U-rich black shales and
granite in Okchun Belt, South Korea (Lee et al.,
1999), sandstone in Eastern Cape, South Africa
(Madi et al., 2014), metamorphites U deposit
in Caldas Novas, Brazil (Lunardi and Bonotto,
2023), and uranium-rich volcanic rocks in Arda-
bil Province, Iran (Hadad and Doulatdar, 2008).
These hot spring acidic and high-temperature
conditions make them prime environments for
uranium mobilization (Honda et al., 1990).
Another phenomenon regarding radiometric
response in Rantedoda is the inverse of K and
¢Th values in the northern part of the studied
area. This may be caused by the behaviour of
K and Th in the soil. Thorium exists almost
exclusively as Th*", making it highly immobile
under most environmental conditions. Its low
solubility restricts its leaching and transport
in soils, leading to accumulation in weathered
horizons and residual soils (Burianek et al.,
2022). Potassium is significantly more mobile
than thorium, especially in soils with low cation-
exchange capacity or sandy textures (Guagliardi
et al., 2020; Tzortzis and Tsertos, 2004). High
Th values indicated enrichment due to weather-
ing, where Th is left and other mobile elements,
such as K and U, are leached. This is confirmed
by geochemical analysis, which shows that Th
and REE levels are higher in the soil than in
the rock when plotted to the weathering indices
(Figure 11). On the contrary, the high K with
low Th values reflect relatively fresh rocks.
This finding agrees with the slope angle map is
depicted in Figure 13. Although almost all areas
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of Rantedoda have steep slope angles, there is
a difference in the area where high Th values
lie in steep slope angles, and K is mostly high
on very steep angles. Meteoric water tends to
run off on the steeper slope, which coincides
with the high K area, thus not accommodating
further weathering. Meteoric water infiltrates
the surface on a gentler slope, leading to rock
weathering, thus enriching Th. Conversely, on
this condition, K and other mobile elements stay
on the rock as leaching is low. This suggests
that direct faulting is not primary to control Th
enrichment in the studied area, and weathering
is more influential.

The Micro-XRF study on Rantedoda dem-
onstrated that the apatite and clay minerals,
specifically montmorillonite and chlorite, which
are present on the altered groundmass, are the
sites of concentration for U and Th (Pratiwi et
al., 2024). This is the case for elevated K, eU,
and surrounding the T2c Fault. Petrographic
analysis confirms the presence of chlorite in
RDD 1 and clay masses in RDD 1 and 5, which
are the samples located near the area. K adsorp-
tion in clay minerals is a common and significant
process in natural soils (Goli-Kalanpa et al.,
2008; Li et al., 2021; Simonsson et al., 2009).
Many studies have explained U adsorption in
alteration-product clay minerals, including kao-
linite, montmorillonite, and smectite (Campos
et al., 2013; Schindler et al., 2015; Simonsson
et al., 2009; Yang, 2023). The clay mineralogy
influences U adsorption by providing specific
pH conditions and ionic strength. On the granitic
system, Th is immobile or has limited mobility
during hydrothermal alteration like albitization
and K-feldspathization (Abd El-Naby, 2009;
Leroy and Turpin, 1988). Th is also found to be
minimally mobilized in felsic volcanic rocks.
Even under acidic conditions, its transport was
negligible (Morales-Arredondo et al., 2018).
This finding suggests hydrothermal alteration of
the Rantedoda volcanic rocks, which produced
clay minerals, adsorb K and U while Th persists,
leading to their enrichment, and may be facili-
tated by the T2c fault.

Based on these results, the exploration pro-
gramme on U, Th, and REE on Rantedoda should
address MSTM faults in the area. Faulting allows
weathering that leads to Th and REE enrichment,
controls leached U redistribution, and facilitates
hydrothermal clay alteration that absorbs U. The
radiometric method helped distinguish enriched
alteration zones (high on all radiometric param-
eters) from the weathering zones (high on eTh,
low on K) and resistant rock (high on K, low on
eTh). Exploration programmes should intensively
studied areas with clay alteration for potential
secondary U, Th, and REE enrichment. While
surface anomalies are valuable indicators, drill-
ing programmes must confirm the vertical extent
of mineralization in fault systems. Geophysical
methods should be implemented to assist subsur-
face zones of hydrothermal activity identification.
Weathered profiles near fault zones should be
systematically sampled and analyzed for U, Th
, and REE content. The findings in this study
might not provide a comprehensive understand-
ing across different geological settings other than
the alkaline rocks of Adang Volcanics that are
affected by MSTM as their geological setting pro-
vides sources and processes for U, Th, and REE
enrichment. Nevertheless, the targeting strategy
can be implemented for future U, Th, and REE
prospection in other Mamuju areas.

CONCLUSIONS

The findings show that the MSTM fault sys-
tem controls the mobilization and enrichment of
U, Th, and REEs in the Rantedoda area. Faults
are noted to create favourable conditions for
mineralization. They make pathways for sub-
surface fluids, facilitate hydrothermal alteration,
and influence weathering processes. Exploration
programmes in Rantedoda should integrate struc-
tural analysis into geochemical, geological, and
geophysical data to areas with clay alteration for
potential secondary U, Th, and REE enrichment
and weathered areas for lateritic Th and REE
enrichment.
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