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Abstract  - New Sr isotope and K2O data are presented for Papandayan and Cikuray Volcanoes in West Java. The 
data are combined with published Sr isotope and K2O data, and compared with arc that has a similar geological set-
ting, namely Northeast Japan Arc (NJA, N 38° ~ 41°) to constrain the relative importance of crustal assimilation and 
subducted input of crustal material in magma genesis beneath West Java Arc (WJA). New strontium isotope and K2O 
data from fifty-four Quaternary volcanic rocks from WJA were collected and compared to forty-six Quaternary volcanic 
rocks from NJA. The increasing K2O and decreasing of 87Sr/86Sr ratios with distance from trench have been found in 
NJA, but there are rough and no across arc variation of K2O and Sr isotopic ratios in WJA. This study shows that the 
across arc variation of magma chemistry on the WJA is attributed to the crustal assimilation and the involvement of 
subducted sediments and slab fluids from altered oceanic crust.  
Keywords: West Java Arc, Northeast Japan Arc, magma genesis, crustal assimilation, subducted sediments, slab fluid
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Introduction

Background
The magma genesis in convergent margin 

such as on WJA, Indonesia, can be examined 
by whole rock geochemistry and isotopic com-
positions. However, these data are not always 
indicative of actual magma source characteristics, 
as they have commonly undergone through com-
plicated processes such as mafic recharge, magma 
mixing, mingling, assimilation, and fractional 
crystallization. Furthermore, the geochemical 
variations of the mantle wedge, subducted oce-

anic crust, subducted sediments, or melts and 
slab configuration also play an important role in 
magma genesis.

Past studies place some constraints on magma 
genesis in WJA. They believed that there is across 
arc variation on WJA (Whitford, 1975; Whitford 
et al., 1979; Soeria-Atmadja et al., 1991; Abdur-
rachman, 2012; Abdurrachman and Yamamoto, 
2012). Although much geological data have been 
reported in Java, the main cause of the rough across 
arc variation of magma chemistry on the WJA is 
not clearly defined. This study provides further 
constraints on magma genesis beneath WJA.
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Here whole-rock Sr isotope and K2O data for 
WJA and new data from Papandayan and Cikuray 
Volcanoes were presented. The new data are 
combined with previously published geochemi-
cal and isotopic data and with other published 
WJA and NJA volcanic rock data to increase 
the understanding of the relative importance of 
both crustal assimilation and subduction input of 
crustal material in WJA

Regional Geology
Tectonic Settings

Indonesia is located at the boundaries of three 
plates, Eurasia, Indian-Australia, and Pacific-
Philippine Plates (Hamilton, 1979). The Indian-
Australia Plate moves northward and is being 
subducted beneath Eurasian Plate with convergent 
rate about 7 cm/year (Turner and Foden, 2001).

On the Late Cretaceous, a microcontinental 
fragment (Argoland) was detached from Gond-
wana and drifted northeastward approaching 
the subduction zone (Metcalfe, 2011). The col-
lision of microcontinent fragment was believed 
as the cause of termination of Late Cretaceous 
subduction as well as the one which shifted the 
subduction to the south of Java. According to 
Katili (1975), the suture zone may exist beneath 
Papandayan and Cikuray Volcanoes (Figure 1a).

Volcanism in West Java
Volcanic arc on Java Island has existed on pres-

ent position at least since 10 Ma (Carn and Pyle, 
2001). On the WJA, number of Quaternary volca-
noes formed a group of volcanoes that are referred 
to the Triangular Volcanic Complex (TVC) along 
three fault zones (Figure 1b). Some of those volca-
noes, such as Papandayan and Cikuray Volcanoes, 
are located in the volcanic front of TVC, West Java, 
and lie within the boundary of Late Cretaceous to 
Early Tertiary suture zone (Figure 1a).

Methods

Thirty-five samples from early to late stages 
of Papandayan and also from Cikuray were col-
lected during field campaign in August 2008 to 

February 2009, and cut to obtain fresh interior and 
crushed using an automatic agate pestle and mor-
tar system to <40 µm. They were then analyzed 
for the major elements (SiO2 and K2O) and trace 
elements (Zr and Nb) using a Rigaku 3270 X-ray 
fluorescence spectrometer (XRF) at Akita Univer-
sity, Japan. Powdered samples were ignited in a 
muffle furnace for two hours at 900°C before the 
preparation of fused glass beads containing 1.8 g 
of sample and 3.6 g of alkali flux (1:2). The alkali 
flux was a mixture of lithium metaborate (LiBO2) 
and lithium tetraborate (Li2B4O7) in a ratio of 1:4. 
Analytical precision is better than 2% for major 
elements and better than 10% for trace elements 
(Kimura and Yamada, 1996). 

Thirty selected samples were analyzed for 
Sr isotope using a Finnigan MAT 261 at Akita 
University, Japan. The methods for extraction 
and acquisition were adapted from Kagami et al. 
(1982) and Yamamoto and Maruyama (1996) . 
NBS-987 and La Jolla standards were also mea-
sured in the same runs, yielding values of 87Sr/86Sr 
= 0.710241 + 0.000008 (2σ).

Results
 
SiO2, K2O, and Sr isotopic ratios of basaltic 

to dacitic volcanic rocks from Papandayan and 
Cikuray area are listed in Table 1. The 87Sr/86Sr 
ratios of Papandayan plot in the fourth quad-
rant; they range from 0.705243 to 0.705907. 
Early stage exhibits the widest range in 87Sr/86Sr 
(0.705243-0.705907), extending well outside 
the 2σ error, whereas in each subsequent stages 
and Cikuray, 87Sr/86Sr ratios are more constant, 
varying by 0.705539-0.706133 for Papandayan 
middle and late stages and 0.704172 to 0.704257 
for Cikuray.

Discussion

The ranges of SiO2 wt.% are 54.03-58.10 
(early stage), 58.66-61.35 (middle stage), 63.58-
75.81 (late stage), and 55.05-29.20 (Cikuray), 
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Figure 1. Historical earthquakes in Sumatra. Yellow star symbols indicate historical GSF earthquakes with M>6. Blue 
star symbols indicate historical megathrust earthquakes with M≥6.5 after 2004. Colour straight lines indicate the GSF 
segmented by geometrical irregularities into nineteen major segments by Sieh and Natawidjaja (2000). (Br: Burangrang; 
TA: Tangkuban Prahu; BU: Bukit Unggul; TM: Tampomas; CI: Ciremai; CA: Cakrabuana; SA: Sawal; CI: Ciremai; GL: 
Galunggung; CK: Cikuray; PP: Papandayan; PU: Puntang; JA: Jaya; GU: Guntur; MA: Malabar; PA: Patuha; KE: Kendeng; 
U: Hanging wall; D: Foot wall.

implying that fractional crystallization is probably 
not the only process in the evolution of Papan-
dayan. Crustal contamination and magma mixing 
could also be involved. Previous studies on the 

WJA suggested that Sr isotope and K2O contents 
increased from the trench side to the backarc 
side volcanoes (Whitford, 1975; Whitford et 
al., 1979; Soeria-Atmadja et al., 1991; Abdur-
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Volcano Stage Sample No SiO2 K2O
87Sr/86Sr 2σ

Papandayan

Early

MA-1 55.88 1.00 0.705243 8
AK-3 57.67 1.26 0.705793 8
AK-1 57.44 1.23 0.705264 8
AK-13 54.69 0.96 0.705431 8
AK-14 54.84 0.71 - -
MA-8A 54.34 0.81 0.705287 9
MA-3B 54.07 0.78 0.705311 12
MA-2A 58.10 1.38 0.705907 7
MA-5B 54.03 0.72 0.705324 6
IM2-3A 56.57 1.11 0.705811 9
MH-7 52.98 0.79 0.705509 8

IM2-5A 57.40 1.23 0.705905 8
MIL-5 57.88 1.31 0.705902 8
MH-1 54.20 0.60 - -
A21-B 54.08 0.58 - -

Middle

AK-5 60.93 1.47 0.705593 6
AK-11 61.35 1.67 0.70559 9
MC-2 58.66 1.72 0.705803 7

MMK-2 59.37 1.48 0.705539 8
IN-22 60.93 1.70 0.705696 9

Late

AK-7 64.09 1.88 0.705891 19
MM-7B 71.07 2.93 0.705802 9
MZ-1 65.50 2.40 0.705924 7

CRG-TJL 67.39 2.91 0.705849 7
MZ-9 63.58 2.05 0.706133 8
IN 4 75.82 1.00 0.705618 8
A-23 63.62 2.30 0.70569 9
IP2-7 65.03 2.25 - -
IN 13 67.26 2.92 - -

Cikuray

IM-5 56.86 0.74 0.704182 8
5.1 55.40 0.70 0.704184 8

IM-3B 57.54 0.73 0.704172 8
MH-9 55.05 0.32 0.704236 17
MH-12 55.97 0.70 0.704257 9
IM-7 59.20 0.82 0.704223 8

Table 1. SiO2, K2O, And Sr Isotopic Ratio of Papandayan and Cikuray Volcanoes

rachman, 2012; Abdurrachman and Yamamoto, 
2012). In detail, however, when the normalized 
of K2O wt.% to SiO2= 55 wt.% from the WJA are 
closely examined and compared with the NJA, the 
WJA shows rough across-arc variation and more 
diverse in K2O, especially in the volcanic front 
(Figure 2a). The decreasing of 87Sr/86Sr ratios 
with distance from trench has been found in NJA 
(e.g. Notsu 1983; Shibata and Nakamura, 1997), 
but there is no across arc variation of Sr isotopic 
ratios in WJA (Figure 2b).

Papandayan and Cikuray volcanic rocks are not 
the only end members of K2O and Sr-Nd isotopic 
ratios in TVC but also the whole Java volcanoes 

(Figure 3). Therefore, the genetic relationship 
between these volcanoes is suitable to explain the 
diversity of all the TVC and Java volcanic rocks.

Mantle Source Characteristics
Immobile trace elements are generally as-

sumed to be unmodified by the subduction 
processes (e.g. Wood et al., 1979). In order to 
identify the mantle source beneath Papandayan 
and Cikuray, immobile element ratios of Zr/Nb 
were employed. Table 2 and Figure 4 show that 
Zr/Nb ratios do not change significantly with 
differentiation and are relatively homogeneous in 
both Papandayan and Cikuray. The Zr/Nb ratios 
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Figure 2. Diagram showing across-arc variation of (a) K2O 
contents, (b) 87Sr/86Sr ratios in TVC (fifty-four samples from 
eight volcanoes) compared with NJA (forty-six samples 
from six volcanoes). The K2O content of each volcanoes is 
normalized to SiO2= 55 wt.% on the empirically determined 
regression curve. (Data sources of Java volcanoes: Whitford, 
1975; Gerbe et al., 1992; Bourdier et al., 1997; Carn and 
Pyle, 2001; Reubi et al., 2002; Gertisser and Keller, 2003; 
Bernard and Mazot, 2004; Sendjaja et al., 2009; this study.
NJA: Katsui et al., 1979; Ishikawa et al., 1984; Sakuyama and 
Koyaguchi, 1984; Yoshida and Aoki, 1984; Maruyama et al., 
1988; Fujimaki et al., 1990; Ohba and Umeda, 1999; Kimura 
and Yoshida, 2006; Yamamoto et al., 2010.

Figure 3. 87Sr/86Sr vs. 143Nd/144Nd isotope ratio diagram 
showing the Papandayan and Cikuray data compared to 
basaltic rocks of Java volcanoes, symbols as in Figure 2. 
I-MORB (Chauvel and Blichert-Toft, 2001); Java volcanoes: 
(Edwards et al., 1991; Gerbe et al., 1992; Edwards et 
al., 1994; Carn and Pyle, 2001; Turner and Foden, 2001; 
Gertisser and Keller, 2003; Chadwick et al., 2007; Handley 
et al., 2009; Sendjaja et al., 2009; Abdurrachman and 
Yamamoto, 2010; this study).

are similar to Indian Mid- Oceanic Ridge Basalt 
(I-MORB). When they are compared to NJA 
(Figure 4), they are flatter and nearly identical 
to I-MORB rather than N-MORB. Considering 
these evidences, magma sources beneath Papan-
dayan and Cikuray are nearly identical in term 
of Zr and Nb compositions indicating that the 
mantle wedge beneath both volcanoes is similar 
to the source of I-MORB.

The Role of Crustal Contamination
The summits of Papandayan and Cikuray 

Volcanoes are contiguous (~ 14 km, Figure 1), 
therefore the local tectonic settings under these 
volcanoes are expected to be constant (convergent 
rate of Sunda Arc: Turner and Foden, 2001; the 
depth of the Wadati-Benioff Zone: Abdurachman 

et al., 2015; distance to the trench axis and crustal 
thickness: Gasparone and Varne, 1998) and the 
chemical diversities of the mantle wedge by 
subducted inputs as proposed by Edwards et al. 
(1991) also to be constant.

The new Sr isotope and K2O data of Papan-
dayan and Cikuray volcanic rocks provide 
surprising observation, that volcanic rocks from 
both volcanoes have distinctively differences 
in K2O and Sr isotopic ratios showing end 
members of TVC (Figure 3). These seem to 

Ratio I-MORB N-MORB NJA Papandayan Cikuray
Zr/Nb 26 32 19-37 20-32 18-29

Table 2. Average Zr/Nb Ratio of Papandayan and Cikuray 
compared to I-MORB, N-MORB, NJA. Data sources: 
I-MORB (Chauvel and Blichert-Toft, 2001), N-MORB (Sun 
and McDonough, 1989), NJA (Shibata and Nakamura, 1997)

Figure 4. Zr vs. Nb for Papandayan and Cikuray compared 
to NJA. Symbols as in Figure 2. Data sources: I-MORB 
(Chauvel and Blichet-Toft, 2001), N-MORB and OIB (Sun 
and McDonough, 1989), NJA (blue solid line curve; Shibata 
and Nakamura, 1997).IJ
OG
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be related to other condition, e.g. local crustal 
composition. 

Sr-Nd Isotopic Mixing Model: I-MORB + AOC 
+ Granites + Sediment

Figure 5a shows a mixing model, where 
I-MORB is contaminated by altered oceanic 
crust (AOC) fluid and Indian Ocean sediments 
end members. Mixing curves fail to provide a 
good fit to isotopic variation of the TVC, and 
could not explain the steep mixing line, also the 
downward bend of Papandayan isotopic trend, 
suggesting that an additional isotopically distinct 
component is needed.

The mixture of basaltic andesite of Cikuray, 
AOC fluid, and crustal contaminants of older 
crust (e.g. Australian granites) have been added 
to produce steep mixing lines. The involvement of 
AOC fluid is clearly shown by the starting points 
of Cikuray which are not on I-MORB (Figure 5b). 

The involvement of subducted sediment to 
the source of I-MORB mantle wedge is evidence 
since the most Nd radiogenic rocks of Cikuray 
are still below than I-MORB-AOC line (Figure 
5b). The basaltic andesite of Cikuray repre-
sents the least evolved sample with the highest 
Nd isotopic ratio in the TVC area. The crustal 
contaminant represents Australian granites as a 
possible microcontinent beneath southern Java 
as proposed by zircon study (Clements and Hall, 
2007; Smyth et al., 2007) which collided to 
the eastern margin of Sunda Land during Late 
Cretaceous to Early Tertiary (Sribudiyani et al., 
2003). The ages of contaminant granites range 
from Silurian to Devonian (SE Australian, Mc-
Culloch and Chappell, 1982) and Pre-Cambrian 
(SW Australian, Bickle et al., 1989, 1993). The 
contaminants used in the mixing modelling are 
listed in Table 3. They are older than the initial 
age of the segregation of Gondwana Super-
continent (Late Devonian), also the formation 
of microcontinent fragments (Late Jurassic) 
(Metcalfe, 1996). Papandayan and Cikuray are 
located at the boundary of Late Cretaceous to 
Early Tertiary suture zone (Katili, 1975) (Figure 
1) and on the extension of East Java continental 

Figure 5. Sr-Nd isotopic mixing model; symbols as in Figure 
2. (a) Mixture of I-MORB (I-MORB*0.1, assuming 10% 
melting) and AOC fluid and sediments. (b) Mixture of basaltic 
andesite of Cikuray with crustal contaminant from Australia 
(SE: thin line; SW: thick line) and  Data sources: I-MORB 
(Chauvel and Blichert-Toft, 2001); basaltic andesite of Ci-
kuray (this study. Sediment A, Mn Nodule, V34-62 (White and 
Dupré, 1986; Ben Othman et al., 1989); B, nanno-ooze, DSDP 
site 211 (Gasparon and Varne, 1998); C, average Java sediment 
(Plank and Langmuir, 1998); D, terrigenous-biogenic aver-
age of V33-75, -77, -79 (Ben Othman et al., 1989; Gasparon 
and Varne, 1998); AOC fluid (Handley et al., 2007); AOC 
(Staudigel et al., 1995); SE Australian granites (McCulloch 
and Chappell, 1982); SW Australian granites (Bickle et al., 
1989, 1993); TVC volcanoes (dashed line curve): (Whitford, 
1975; Gerbe et al., 1992; Sendjaja et al., 2009; this study).

fragment to West Java (Clement and Hall, 2007; 
Abdurrachman et al., 2018). Therefore, it is ap-
propriate to use Australian granites as candidates 
for crustal contaminant. 

The results show that many mixing curves of 
granitic rocks produce reasonable fit to the TVC 
trends compared to Indian Ocean sediments (Fig-
ure 5b). Considering this mixing model we argue 
that the presence of “Argoland” beneath southern 
West Java was responsible for Sr-Nd isotopic 
ratios diversity in Papandayan area as well as in 
the TVC as illustrated in Figure 6.
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 Sr (ppm) Nd (ppm) Sr/Nd 87Sr/86Sr 143Nd/144Nd 
I-MORB source 13.5 0.97 13.92 0.702915 0.513042

Basaltic member of Guntur 225 10.3 21.84 0.703882 0.512982
AOC fluid 22.42 0.697 32.17 0.704584 0.513070

Sediment  
A 857 187.9 4.561 0.709117 0.512236
B 126 51.9 2.428 0.716430 0.512228
C 218 33.95 6.421 0.716820 0.512160
D 398 15.36 25.911 0.708875 0.512411

SE Australian Granites  
Tingaringy granodiorite 30.34 168 0.18 0.728400 0.511252
Numbla Vale adamelite 25.31 97 0.26 0.752810 0.511246
Cooma granodiorite 70.13 127 0.55 0.738900 0.511111
Cooma gneiss 44.74 114 0.39 0.758390 0.511193
Jillamatong granodiorite 22.29 139 0.16 0.737890 0.511186
Ingebyrah granodiorite 32.23 163 0.20 0.730180 0.511255
Kalkite adamelite 27.96 117 0.24 0.744050 0.511242
State Circle shale 39.3 23 1.71 0.879330 0.511094
Buckley Lake adamellite 191 37.12 5.15 0.723520 0.511483
Buckley Lake adamellite 175 33.18 5.27 0.725550 0.511514
Tara granodiorite 252 24.51 10.28 0.712030 0.511441
Namungo adamelite 33 8.98 3.67 0.808030 0.511640
Delegate adamellite 131 34.39 3.81 0.729060 0.511520
Iona granodiorite 264 22.36 11.81 0.713570 0.511452
Wullwye granodiorite 189 42.26 4.47 0.716170 0.511596
Maffra adamellite 121 25.5 4.75 0.729860 0.511595
Bimbimbie granodiorite 243 28.48 8.53 0.717630 0.511282
Currowong granodiorite 231 23.8 9.71 0.717110 0.511339
Merumbago granodiorite 139 18.42 7.55 0.726910 0.511160
Finister granodiorite 123 19.79 6.22 0.729480 0.511213
Jindagyne tonalite 254 17.96 14.14 0.713620 0.511393
Grosses Plain granodiorite 256 13.95 18.35 0.709020 0.511479

SW Australian Granites  
Porphyritic granites      
SB 599 398 39 10.21 0.738310 0.510432
Y1-5 364 48 7.58 0.741870 0.510520
Y1-7 376 48 7.83 0.739930 0.510650
Leuco-adamellite      
SB 437 203 42 4.83 0.709113 0.510245
SB 450 199 50 3.98 0.81437 0.510248
Contact tonalite      
SB 611 739 28 26.39 0.710580 0.510208
SB 615 815 35 23.29 0.709150 0.510191
SB 616 777 32 24.28 0.709970 0.510319

Table 3. End-member Compositios Used in the Mixing Calculation for Figure 5

Data Sources: I-MORB (Chauvel and Blichert-Toft 2001), basaltic member of Guntur (Sendjaja et al., 2009); sediment: A, Mn nodule, 
V34-62 (White and Dupré, 1986; Ben Othman et al., 1989); B, nanno-ooze, DSDP site 211 (Gasparon and Varne, 1998); C, average Java 
sediment (Plank and Langmuir, 1998); D, terrigenous-biogenic average of V33-75, -77, -79 (Ben Othman et al., 1989; Gasparon and Varne, 
1998); AOC fluid (Handley et al., 2007); AOC (Staudigel et al., 1995); crustal contaminant: SE Australian granites  (McCulloch and Chap-
pell, 1982), SW Australian granites  (Bickle et al., 1989, 1993).

Figure 6. Illustration of magma genesis beneath Papandayan Volcano (no scale). AOC: altered oceanic crust; S: south; N: north.
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Conclusion

The WJA shows rough across-arc variation and 
more diverse in K2O and no across arc variation 
for Sr isotopic ratio especially in the volcanic 
front, it is due to Papandayan data. The contrast-
ing Sr-Nd isotopic ratios in Papandayan area can 
be explained by the mixing of clear mantle wedge 
(I-MORB + AOC + Indian Sediments) with Pa-
leozoic to Pre-Cambrian Australian Granites as 
the missing “Argoland” which have separated 
from Western Australia in the Late Jurassic and 
collided to SE Sundaland in the Late Cretaceous. 
We note that the presence of “Argoland” beneath 
southern West Java is thought to contribute sig-
nificantly to the spatial geochemical source input 
variations exhibited by TVC volcanoes.
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